Using Consolidator with Zeros
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Using Consolidator with a vector comprised of whole number values ranging from 0 to 23 (hourly time code), I get an hourallC output vector with 23 values (not 24 as expected), with the first three being:
0.5000, 2, 3 ... 23 (23 in total)
They should be:
0, 1, 2 ... 23 (24 in total)
Code is as follows:
[hourallC, OCS_d41C]=consolidator(hourall, OCS_d41, 'nanmean', 1);
My suspicion is that Consolidator is processing the zeros in an unexpected way or that I need a different function other than nanmean in there.
hourall is comprised of whole numbers 0-23, length of 1702.
Thanks for the help.
0 Commenti
Risposta accettata
John D'Errico
il 5 Ago 2016
Modificato: John D'Errico
il 5 Ago 2016
Your suspicion is totally wrong about 0. Although I have no idea what you actually did. As I show below, you never needed to use a tolerance at all. Regardless, I cannot reproduce the behavior you claim to see.
Consolidator is a code fundamentally designed to remove duplicate elements (x), or near duplicates, reducing the corresponding values (y) by some function.
Be careful though. By using any tolerance at all, IF the numbers in x were really as you say, i.e., whole numbers, then consolidator should have been fine.
For example, first of all, you never needed to use any tolerance. They are exact integers, so you claim.
x = randi([0,23],1000,1);
y = rand(1000,1);
[x0,y0] = consolidator(x,y,@nanmean);
x0
x0 =
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
numel(x0)
ans =
24
So it works fine with no tolerance at all. By putting a tolerance of exactly 1, which also happens to be the exact stride, there is some floating point risk that it will consider the numbers to be within the tolerance.
But a quick test can verify that fact or not.
[x0,y0] = consolidator(x,y,@nanmean,1);
numel(x0)
ans =
24
Nope. Works fine here. In fact, I could probably have used a smaller stride than 1 as a tolerance, and still survived.
[x0,y0] = consolidator(x,y,@nanmean,.9);
numel(x0)
ans =
24
Really though, no tolerance was ever needed, as I showed. In fact, I simply cannot reproduce the exact behavior that you claim to have gotten. UNLESS of course, you really don't have what you say. If the numbers in x are not indeed whole numbers as you claim, then problems arise.
Regardless, for the problem you claim to have, you never needed to use any tolerance there at all.
Più risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!