# How to input pi

2.187 visualizzazioni (ultimi 30 giorni)
Anthony il 20 Set 2016
How can i enter pi into an equation on matlab?
##### 2 CommentiMostra NessunoNascondi Nessuno
Vignesh Shetty il 6 Apr 2020
Hi Anthony!
Its very easy to get the value of π. As π is a floating point number declare a long variable then assign 'pi' to that long variable you will get the value.
Eg:-
format long
p=pi
Walter Roberson il 16 Dic 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Accedi per commentare.

### Risposta accettata

Geoff Hayes il 20 Set 2016
Modificato: MathWorks Support Team il 28 Nov 2018
Anthony - use pi which returns the floating-point number nearest the value of π. So in your code, you could do something like
sin(pi)
##### 1 CommentoMostra -1 commenti meno recentiNascondi -1 commenti meno recenti
Walter Roberson il 16 Dic 2022
Also see sinpi and cospi

Accedi per commentare.

### Più risposte (4)

Essam Aljahmi il 31 Mag 2018
Modificato: Walter Roberson il 31 Mag 2018
28t2e0.3466tcos(0.6πt+π3)ua(t).
##### 5 CommentiMostra 3 commenti meno recentiNascondi 3 commenti meno recenti
Image Analyst il 20 Ott 2018
Attached is code to compute Ramanujan's formula for pi, voted the ugliest formula of all time.
.
Actually I think it's amazing that something analytical that complicated and with a variety of operations (addition, division, multiplication, factorial, square root, exponentiation, and summation) could create something as "simple" as pi.
Unfortunately it seems to get to within MATLAB's precision after just one iteration - I'd have like to see how it converges as afunction of iteration (summation term). (Hint: help would be appreciated.)
John D'Errico il 28 Nov 2018
Modificato: John D'Errico il 28 Nov 2018
As I recall, these approximations tend to give a roughly fixed number of digits per term. I'll do it using HPF, but syms would also work.
DefaultNumberOfDigits 500
n = 10;
piterms = zeros(n+1,1,'hpf');
f = sqrt(hpf(2))*2/9801*hpf(factorial(0));
piterms(1) = f*1103;
hpf396 = hpf(396)^4;
for k = 1:n
hpfk = hpf(k);
f = f*(4*hpfk-3)*(4*hpfk-2)*(4*hpfk-1)*4/(hpfk^3)/hpf396;
piterms(k+1) = f*(1103 + 26390*hpfk);
end
piapprox = 1./cumsum(piterms);
pierror = double(hpf('pi') - piapprox))
pierror =
-7.6424e-08
-6.3954e-16
-5.6824e-24
-5.2389e-32
-4.9442e-40
-4.741e-48
-4.5989e-56
-4.5e-64
-4.4333e-72
-4.3915e-80
-4.3696e-88
So roughly 8 digits per term in this series. Resetting the default number of digits to used to 1000, then n=125, so a total of 126 terms in the series, we can pretty quickly get a 1000 digit approximation to pi:
pierror = hpf('pi') - piapprox(end + [-3:0])
pierror =
HPF array of size: 4 1
|1,1| -1.2060069282720814803655e-982
|2,1| -1.25042729756426e-990
|3,1| -1.296534e-998
|4,1| -8.e-1004
So as you see, it generates a very reliable 8 digits per term in the sum.
piapprox(end)
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
hpf('pi')
ans =
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
I also ran it for 100000 digits, so 12500 terms. It took a little more time, but was entirely possible to compute. I don't recall which similar approximation I used some time ago, but I once used it to compute 1 million or so digits of pi in HPF. HPF currently stores a half million digits as I recall.
As far as understanding how to derive that series, I would leave that to Ramanujan, and only hope he is listening on on this.

Accedi per commentare.

Walter Roberson il 20 Ott 2018
If you are constructing an equation using the symbolic toolbox use sym('pi')
##### 3 CommentiMostra 1 commento meno recenteNascondi 1 commento meno recente
James Emmanuelle Galvan il 22 Ott 2021
sym(pi) prints out "pi".
Steven Lord il 22 Ott 2021
That's correct. There are four different conversion techniques the sym function uses to determine how to convert a number into a symbolic expression. The default is the 'r' flag which as the documentation states "converts floating-point numbers obtained by evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q (for modest sized integers p and q) to the corresponding symbolic form."
The value returned by the pi function is "close enough" to p*pi/q (with p and q both equal to 1) for that conversion technique to recognize it as π. If you wanted the numeric value of the symbolic π to some number of decimal places use vpa.
p = sym(pi)
p =
π
vpa(p, 30)
ans =
3.14159265358979323846264338328

Accedi per commentare.

Dmitry Volkov il 16 Dic 2022
Easy way:
format long
p = pi
##### 1 CommentoMostra -1 commenti meno recentiNascondi -1 commenti meno recenti
Walter Roberson il 16 Dic 2022
That is what @Geoff Hayes suggested years before. But it does not enter π into the calculation, only an approximation of π

Accedi per commentare.

AKHIL TONY il 1 Ago 2023
using pi will give an approximate value
##### 1 CommentoMostra -1 commenti meno recentiNascondi -1 commenti meno recenti
Walter Roberson il 1 Ago 2023
Yes, multiple people pointed that out years ago

Accedi per commentare.

### Categorie

Scopri di più su Elementary Math in Help Center e File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by