Creating an imdb structure
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
I have written a new createIMDB function following an online tutorial on Deep Learning by German Ros. The original imdb was written for a binary classification problem. I attempted to change it for a three class problem. Each of my class 'cat', 'dog' and 'rat' contain say, three images, for simplicity. My function goes like this:
function imdb = createIMDB_RAM1(folder)
% imdb is a matlab struct with several fields, such as:
% - images: contains data, labels, ids dataset mean, etc.
% - meta: contains meta info useful for statistics and visualization
% - any other you want to add
imdb = struct();
% let's assume we have a folder with three
% subfolders "cat" "dog" and "rat" containing images
% for a multi-class problem
positives = dir([folder '/cat/*.jpg']);
negatives = dir([folder '/dog/*.jpg']);
neutral = dir([folder '/rat/*.jpg']);
imref = imread([folder '/cat/', positives(1).name]);
[H, W, CH] = size(imref);
% number of images
NPos = numel(positives);
NNeg = numel(negatives);
NNeu = numel(neutral);
N = NPos + NNeg + NNeu;
% we can initialize part of the structures already
meta.sets = {'train', 'val'};
meta.classes = {'cat', 'dog', 'rat'};
% images go here
images.data = zeros(H, W, CH, N, 'single');
% this will contain the mean of the training set
images.data_mean = zeros(H, W, CH, 'single');
% a label per image
images.labels = zeros(1, N);
% vector indicating to which set an image belong, i.e.,
% training, validation, etc.
images.set = zeros(1, N);
numImgsTrain = 0;
% loading positive samples
for i=1:numel(positives)
im = single(imread([folder '/cat/', positives(i).name]));
images.data(:,:,:, i) = im;
images.labels(i) = 2;
% in this case we select the set (train/val) randomly
if(randi(10, 1) > 6) % 60% for training and 40% for validation
images.set(i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(i) = 2;
end
end
% loading negative samples
for i=1:numel(negatives)
im = single(imread([folder '/dog/', negatives(i).name]));
images.data(:,:,:, NPos+NNeu+i) = im;
images.labels(NPos+NNeu+i) = 1;
% in this case we select the set (train/val) randomly
if(randi(10, 1) > 6)
images.set(NPos+NNeu+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(NPos+NNeu+i) = 2;
end
end
% loading neutral samples
for i=1:numel(neutral)
im = single(imread([folder '/rat/', neutral(i).name]));
images.data(:,:,:, NPos+NNeg+i) = im;
images.labels(NPos+NNeu+i) = 3;
% in this case we select the set (train/val) randomly
if(randi(10, 1) > 6)
images.set(NPos+NNeg+i) = 1;
images.data_mean = images.data_mean + im;
numImgsTrain = numImgsTrain + 1;
else
images.set(NPos+NNeu+i) = 2;
end
end
% let's finish to compute the mean
images.data_mean = images.data_mean ./ numImgsTrain;
% now let's add some randomization
indices = randperm(N);
images.data(:,:,:,:) = images.data(:,:,:,indices);
images.labels(:) = images.labels(indices);
images.set(:) = images.set(indices);
imdb.meta = meta;
imdb.images = images;
end
I'm trying to give labels '1', '2', '3' for 'cat', 'dog' and 'rat' respectively. When i run the function, all the other meta-parameters including the number of sets (train, val), labels ('cat', 'dog', 'rat') are declared properly however the 'labels' and 'sets' are improperly assigned to the images. I'm pretty sure I am committing mistake in assigning the labels and sets inside the 'for' loop.
This is an issue with creating a structure and I'm sure the experts out here can solve my problem in no time. Kindly help rectifying the same with the modified peice of code. Thanks for your assistance.
9 Commenti
Greg Heath
il 7 Mar 2017
The classical approach to NN classification of non-overlapping classes is to use {0,1} unit vector targets.
Then the outputs can be interpreted as conditional posterior probabilities.
See any text on pattern recognition.
Hope this helps.
Greg
Risposte (0)
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!