how to calculate the classification accuracy in neural network toolbox?
    13 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Mallikarjun Yelameli
 il 9 Mag 2017
  
    
    
    
    
    Commentato: Joana
 il 2 Lug 2020
            net=patternnet(10);
[net,tr]=train(net,inputs,targets);
outputs=net(inputs);
[values,pred_ind]=max(outputs,[],1);
[~,actual_ind]=max(targets,[],1);
accuracy=sum(pred_ind==actual_ind)/size(inputs,2)*100;
 Is this correct way to calculate the classification accuracy??
2 Commenti
  Muhammad Shahzaib
 il 23 Mag 2019
				Yes, this is the correct way to calculate the accuracies, (but some times you need to round off the third decimal place to get the exact value.)
For, TEST accuracy :-
[~,pred_ind_tst]=max(outputs(:,[tr.testInd]),[],1);
 [~,actual_ind_tst]=max(targets(:,[tr.testInd]),[],1);
 Test_accuracy =sum(pred_ind_tst==actual_ind_tst)/size(targets(:,[tr.testInd]),2)*100
Double check your calculation using below:
plotconfusion(targets(:,[tr.testInd]),outputs(:,[tr.testInd]),'Test_accuracy ');
  Joana
 il 2 Lug 2020
				Hi
I tried the above code for calculating test accuracy and double checked with plotting confusion matrix, but the accuracy comes out to be 100% while confusion matrix gives 58.3%.
How i can save the actual test accuracy.?
Risposta accettata
  Greg Heath
      
      
 il 11 Mag 2017
        Search ot NEWSGROUP and ANSWERS with
 greg patternnet
and
 greg patternnet tutorial
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Commenti
Più risposte (2)
  Santhana Raj
      
 il 9 Mag 2017
        There are various parameters that can and are used in different classification algorithms. Take a look at this wiki page:
Most generally used terms are precision, recall, true negative rate, accuracy. The most widely used is F-measure. The wiki page gives the formula for this. You can shoose one based on your application.
0 Commenti
  Saira
 il 15 Giu 2020
        Hi,
I have 5600 training images. I have extracted features using Principal Component Analysis (PCA). Then I am applying CNN on extracted features. My training accuracy is 30%. How to increase training accuracy?
Feature column vector size: 640*1
My training code:
% Convolutional neural network architecture
layers = [
          imageInputLayer([1 640 1]); 
          reluLayer
          fullyConnectedLayer(7);
          softmaxLayer();
          classificationLayer()];
options = trainingOptions('sgdm',  'Momentum',0.95,  'InitialLearnRate',0.0001,  'L2Regularization', 1e-4,  'MaxEpochs',5000,  'MiniBatchSize',8192,  'Verbose', true);
0 Commenti
Vedere anche
Categorie
				Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
			
	Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!