What does the training accuracy plot of my convolution neural network (CNN) show?

2 visualizzazioni (ultimi 30 giorni)
Hello everybody
the result of my CNN is shown in the picture attached. I'm wondering about the accuracy why it goes down and up during the training? is it normal or it should grow gradually? and what is the possible error that may I have on my net (or parameters)!! Additionally, whatever I change the training options; the test accuracy does not exceed 42% !!!
if true
Training on single CPU.
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 6.67 | 1.6277 | 0.00% | 1.00e-04 |
| 1 | 20 | 128.30 | 1.6677 | 25.00% | 1.00e-04 |
| 1 | 40 | 253.77 | 1.6505 | 50.00% | 1.00e-04 |
| 1 | 60 | 381.41 | 0.9331 | 87.50% | 1.00e-04 |
| 1 | 80 | 505.31 | 1.0754 | 25.00% | 1.00e-04 |
| 2 | 100 | 629.83 | 1.6579 | 12.50% | 1.00e-04 |
| 2 | 120 | 758.84 | 1.3724 | 62.50% | 1.00e-04 |
| 2 | 140 | 884.09 | 1.1539 | 50.00% | 1.00e-04 |
| 2 | 160 | 1028.53 | 1.1311 | 37.50% | 1.00e-04 |
| 2 | 180 | 1154.14 | 1.4353 | 37.50% | 1.00e-04 |
| 3 | 200 | 1277.55 | 0.9360 | 50.00% | 1.00e-04 |
| 3 | 220 | 1401.44 | 0.9559 | 50.00% | 1.00e-04 |
| 3 | 240 | 1525.49 | 1.6097 | 25.00% | 1.00e-04 |
| 3 | 260 | 1649.96 | 0.9116 | 62.50% | 1.00e-04 |
| 3 | 280 | 1774.19 | 1.0897 | 37.50% | 1.00e-04 |
| 4 | 300 | 1898.34 | 1.4818 | 12.50% | 1.00e-04 |
| 4 | 320 | 2022.42 | 1.1853 | 50.00% | 1.00e-04 |
| 4 | 340 | 2146.87 | 0.9665 | 62.50% | 1.00e-04 |
| 4 | 360 | 2272.24 | 1.1143 | 37.50% | 1.00e-04 |
| 4 | 380 | 2396.43 | 1.1264 | 37.50% | 1.00e-04 |
| 5 | 400 | 2522.21 | 1.5471 | 50.00% | 1.00e-04 |
| 5 | 420 | 2646.45 | 1.3815 | 50.00% | 1.00e-04 |
| 5 | 440 | 2776.98 | 0.7213 | 87.50% | 1.00e-04 |
| 5 | 460 | 2906.50 | 0.8455 | 87.50% | 1.00e-04 |
| 6 | 480 | 3033.40 | 1.7557 | 12.50% | 1.00e-04 |
| 6 | 500 | 3159.12 | 1.1510 | 50.00% | 1.00e-04 |
| 6 | 520 | 3290.33 | 1.0716 | 62.50% | 1.00e-04 |
| 6 | 540 | 3419.24 | 1.2187 | 37.50% | 1.00e-04 |
| 6 | 560 | 3545.82 | 1.3443 | 37.50% | 1.00e-04 |
| 7 | 580 | 3671.92 | 0.9136 | 50.00% | 1.00e-04 |
| 7 | 600 | 3796.45 | 0.8985 | 62.50% | 1.00e-04 |
| 7 | 620 | 3920.45 | 1.4416 | 37.50% | 1.00e-04 |
| 7 | 640 | 4051.54 | 0.9950 | 75.00% | 1.00e-04 |
| 7 | 660 | 4191.68 | 0.8132 | 75.00% | 1.00e-04 |
| 8 | 680 | 4328.36 | 1.3569 | 25.00% | 1.00e-04 |
| 8 | 700 | 4463.55 | 1.1009 | 50.00% | 1.00e-04 |
| 8 | 720 | 4593.56 | 1.0073 | 62.50% | 1.00e-04 |
| 8 | 740 | 4718.89 | 1.0589 | 50.00% | 1.00e-04 |
| 8 | 760 | 4843.50 | 0.9829 | 50.00% | 1.00e-04 |
| 9 | 780 | 4965.23 | 1.2858 | 62.50% | 1.00e-04 |
| 9 | 800 | 5086.95 | 1.4522 | 50.00% | 1.00e-04 |
| 9 | 820 | 5207.89 | 0.4955 | 100.00% | 1.00e-04 |
| 9 | 840 | 5328.95 | 0.7283 | 100.00% | 1.00e-04 |
| 10 | 860 | 5450.18 | 1.6487 | 37.50% | 1.00e-04 |
| 10 | 880 | 5570.79 | 0.8402 | 75.00% | 1.00e-04 |
| 10 | 900 | 5692.05 | 0.8969 | 62.50% | 1.00e-04 |
| 10 | 920 | 5812.29 | 1.1199 | 37.50% | 1.00e-04 |
| 10 | 940 | 5932.70 | 1.0859 | 50.00% | 1.00e-04 |
| 11 | 960 | 6053.34 | 0.7106 | 62.50% | 1.00e-04 |
| 11 | 980 | 6173.80 | 0.8470 | 50.00% | 1.00e-04 |
| 11 | 1000 | 6295.36 | 1.3543 | 25.00% | 1.00e-04 |
| 11 | 1020 | 6415.40 | 1.0594 | 50.00% | 1.00e-04 |
| 11 | 1040 | 6537.31 | 0.4968 | 75.00% | 1.00e-04 |
| 12 | 1060 | 6659.25 | 1.0452 | 50.00% | 1.00e-04 |
| 12 | 1080 | 6780.46 | 0.8746 | 62.50% | 1.00e-04 |
| 12 | 1100 | 6900.97 | 1.1169 | 50.00% | 1.00e-04 |
| 12 | 1120 | 7022.03 | 0.9600 | 50.00% | 1.00e-04 |
| 12 | 1140 | 7144.63 | 0.8063 | 50.00% | 1.00e-04 |
| 13 | 1160 | 7266.01 | 1.0481 | 75.00% | 1.00e-04 |
| 13 | 1180 | 7385.75 | 1.3504 | 50.00% | 1.00e-04 |
| 13 | 1200 | 7505.62 | 0.3157 | 100.00% | 1.00e-04 |
| 13 | 1220 | 7627.16 | 0.6529 | 87.50% | 1.00e-04 |
| 14 | 1240 | 7749.26 | 1.1844 | 62.50% | 1.00e-04 |
| 14 | 1260 | 7874.78 | 0.6447 | 75.00% | 1.00e-04 |
| 14 | 1280 | 7994.68 | 0.7824 | 62.50% | 1.00e-04 |
| 14 | 1300 | 8114.98 | 0.9300 | 62.50% | 1.00e-04 |
| 14 | 1320 | 8237.20 | 0.8984 | 62.50% | 1.00e-04 |
| 15 | 1340 | 8359.44 | 0.4070 | 75.00% | 1.00e-04 |
| 15 | 1360 | 8481.32 | 1.0424 | 62.50% | 1.00e-04 |
| 15 | 1380 | 8601.45 | 0.8956 | 50.00% | 1.00e-04 |
| 15 | 1400 | 8722.41 | 0.9647 | 62.50% | 1.00e-04 |
| 15 | 1420 | 8844.57 | 0.2415 | 100.00% | 1.00e-04 |
| 15 | 1425 | 8874.94 | 0.6794 | 62.50% | 1.00e-04 |
|=========================================================================================|
accuracy =
0.3787
end

Risposte (0)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by