Code Vectorization in custom layer

1 visualizzazione (ultimi 30 giorni)
Rui Xiang
Rui Xiang il 11 Apr 2018
Commentato: Rui Xiang il 16 Apr 2018
Hi, we are designing a custom layer where we need to calculate the back-derivative from a 4D matrix
Here is a simple way using for loop to implement it
X = zeros(2,2,2,2);
X([1 5 7 10 12 14 16]) = rand(7,1);
kernelsize=5;
A=cell(2,1);
A{1}=rand(2,5);
A{2}=rand(2,5);
f=cell(2,1);
f{1}=rand(2,1);
f{2}=rand(2,1);
k = find(X);
[ii, jj, kk, ll] = ind2sub( size(X), k);
Z=zeros(size(X));
dLdW=zeros(2,5,2);
for j=1:kernelsize
for i=1:length(k)
Z(k(i))=X(k(i))*dot(A{jj(i)}(:,j),f{jj(i)});
end
sol=sum(Z,2);
dLdW(:,j,:)=sum(sol,4);
Z=zeros(size(X));
end
Is there a way to not use for loop? Because I want to use GPU to train it.

Risposta accettata

Joss Knight
Joss Knight il 15 Apr 2018
Adotf = cellfun(@(aa,ff)ff.'*aa, A, f, 'UniformOutput', false);
Adotf = cat(1, Adotf{:});
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
Are all the A matrices and f vectors the same size? Because if so you shouldn't use a cell array, you should concatenate in dim 3 and use pagefun instead of cellfun (if you're using gpuArray).
A = cat(3, A{:});
f = cat(2, f{:});
f = shiftdim(f, -1);
Adotf = pagefun(@mtimes, f, A);
Adotf = permute(Adotf, [3 2 1]);
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
  2 Commenti
Rui Xiang
Rui Xiang il 16 Apr 2018
They are not the same size. That's actually the biggest difficulty for me
Rui Xiang
Rui Xiang il 16 Apr 2018
Thanks very much for you help:)

Accedi per commentare.

Più risposte (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by