Why does my code for shooting method using 'ODE45' or 'ODE23s' does not converge to the boundary value.?
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have used shooting method with ' ode45' or ' ode23s'.
But , the solution doesn't converge and it takes a lot of time.
The equations are
f"=g(g^2+gamma^2)/(g^2+lambda*gamma^2) ------ (1)
g'= (1/3)*f'^2-(2/3)*(f*f")+ Mn*f' ------------------------(2)
t"+Rd*t"+ 2*Pr*f*t'/3+ Nb*t'*p'+Nt*(t')^2= 0------(3)
p"+(2*Lew*f*p')/3+ Nt*t"/Nb= 0 ------------------------(4)
With the initial and boundary conditions
f(0)=0, f'(0)=1, t(0)=1, p(0)=1
f'(infinity)=0, t(infinity)=0, p(infinity)=0
The code for shooting method using ode45 is
function shooting_method
clc;clf;clear;
global lambda gama Pr Rd Lew Nb Nt Mn
gama=1;
Mn=1;
Rd=0.1;
Pr=10;
Nb=0.2;
Lew=10;
Nt=0.2;
lambda=0.5;
x=[1 1 1];
options= optimset('Display','iter');
x1= fsolve(@solver,x);
end
function F=solver(x)
options= odeset('RelTol',1e-8,'AbsTol',[1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8]);
[t,u]= ode45(@equation,[0 10],[0 1 x(1) 1 x(2) 1 x(3)],options)
s=length(t);
F= [u(s,2),u(s,4),u(s,6)];
%deval(0,u)
plot(t,u(:,2),t,u(:,4),t,u(:,6));
end
function dy=equation(t,y)
global lambda gama Pr Rd Lew Nb Nt Mn
dy= zeros(7,1);
dy(1)= y(2);
dy(2)= y(3)*(y(3)^2+gama^2)/(y(3)^2+lambda*gama^2);
dy(3)= y(2)^2/3-(2*y(1)*y(3)*(y(3)^2+gama^2))/(3*(y(3)^2+lambda*gama^2))+Mn*y(2);
dy(4)= y(5);
dy(5)= -(2*Pr*y(1)*y(5))/(3*(1+Rd)) - (Nb*y(5)*y(7))/(1+Rd) - (Nt*y(5)^2)/(1+Rd);
dy(6)= y(7);
dy(7)= -((2*Lew*y(1)*y(7))/3)+ (Nt/Nb)*((2*Pr*y(1)*y(5))/(3*(1+Rd)) + (Nb*y(5)*y(7))/(1+Rd) + (Nt*y(5)^2)/(1+Rd));
end
0 Commenti
Risposta accettata
Torsten
il 2 Mag 2018
Try to start with the solution you get from "bvp4c" for the vector x.
Best wishes
Torsten.
0 Commenti
Più risposte (1)
Jan
il 2 Mag 2018
Modificato: Jan
il 2 Mag 2018
You want to get:
f'(infinity)=0, t(infinity)=0, p(infinity)=0
but you integrate on the interval [0, 10]. 10 is not infinity. It is possible, that there is no possible start value, which reaches the wanted final point at the time 10.
Another problem can be the standard limitation of the single shooting methods: if a certain parameter causes a trajectory with Inf or NaN values, convergence is impossible. Then a multiple-shooting approach can help. Ask Wikipedia for details.
You use ode45 or ode23s? One is for non-stiff, the other for stiff systems. Using them by trial and error seems to be a very relaxed method of applied mathematics.
8 Commenti
Torsten
il 4 Mag 2018
function F=solver(x)
options= odeset('RelTol',1e-8,'AbsTol',[1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8]);
[t,u] = ode15s(@equation,[0 4],[0 1 x(1) 1 x(2) 1 x(3)],options)
F= [u(end,2),u(end,4),u(end,6)];
y1 = u(1,:); % should be equal to [0 1 x(1) 1 x(2) 1 x(3)]
plot(t,u(:,5),t,u(:,7));
end
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!