Weighting Classes in a Binary Classification Neural Network
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
I am building a binary classification neural network. The last 3 layers of my CNN architecture are the following:
fullyConnectedLayer(2, 'Name', 'fc1');
softmaxLayer
classificationLayer
Currently, the classificationLayer uses a crossentropyex loss function, but this loss function weights the binary classes (0, 1) the same. Unfortunately, in my total data is have substantially less information about the 0 class than about the 1 class.
As a result, I want to weight the loss function to penalize misclassifying the 0 class more, with classWeights proportional to 1/(class frequency).
I noted that there is a way to weight classes in the pixelClassificationLayer but not the general classificationLayer, which I would be using as I am working on a classification problem.
How can I add class weights to my loss function for training?
3 Commenti
Eugene Alexander
il 28 Mag 2019
Please take a look at Define Custom Weighted Classification Layer and the example on Speech Command Recognition using Deep Learning. I am trying it right now on a binary classification problem.
Risposte (0)
Vedere anche
Categorie
Scopri di più su Pattern Recognition and Classification in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!