Subscripted assignment dimension mismatch.
    5 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
i have this error 
Subscripted assignment dimension mismatch.
Error in Untitled4 (line 106)
      rgbest(run,:)=gbest;
the code is 
%---------------------------------------------------------------------------------------------------------------------------------start 
tic
clc 
clear all
close all 
rng default  
LB=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05]; % lower bounds of variables
UB=[1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1]; % upper bounds of variables   
% pso parameters values 
m=14;          % number of variables 
n=100;          % population size 
wmax=0.9;      % inertia weight 
wmin=0.4;      % inertia weight
c1=2;        % acceleration factor 
c2=2;       % acceleration factor
% pso main program----------------------------------------------------start
maxite=500;    % set maximum number of iteration
maxrun=10;      % set maximum number of runs need to be 
for run=1:maxrun    
    run   
    % pso initialization----------------------------------------------start     
    for i=1:n       
        for j=1:m            
            x0(i,j)=round(LB(j)+rand()*(UB(j)-LB(j)));         
        end
    end
    x=x0;       % initial population     
    v=0.1*x0;   % initial velocity 
    f0=cell(1,n);  %preallocation
    for i=1:n         
        f0{i}=ofun(x0(i,:));     
    end
    [fmin0,index0]=min(f0{i});
    pbest=x0;               % initial pbest    
    gbest=x0(index0,:);     % initial gbest    
    % pso initialization-----------------------------------------------end
    % pso algorithm---------------------------------------------------start    
    ite=1;         
    tolerance=1;     
    while ite<=maxite 
        tolerance>1e-12                
        w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight          
        % pso velocity updates         
        for i=1:n            
            for j=1:m                 
                v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))...                        
                    +c2*rand()*(gbest(1,j)-x(i,j));             
            end
        end
        % pso position update
    for i=1:n             
        for j=1:m                
            x(i,j)=x(i,j)+v(i,j);             
        end
    end
     % handling boundary violations         
     for i=1:n             
         for j=1:m                 
             if x(i,j)<LB(j)                     
                 x(i,j)=LB(j);                
             elseif x(i,j)>UB(j)                     
                 x(i,j)=UB(j);                 
             end
         end
     end
     % evaluating fitness 
     f=cell(1,50);  %preallocation
     for i=1:n            
         f{i}=ofun(x(i,:));
    end
    % updating pbest and fitness         
    for i=1:n             
        if f{i}<f0{i}
             pbest(i,:)=x(i,:);                
             f0{i}=f{i};             
        end
    end
    [fmin,index]=min(f0{i});   
    % finding out the best particle         
    ffmin(ite,run)=fmin(1);    % storing best fitness         
    ffite(run)=ite;         % storing iteration count           
    % updating gbest and best fitness         
    if fmin<fmin0             
        gbest=pbest(index,:);             
        fmin0=fmin;         
    end
     % calculating tolerance 
     if ite>100;             
         tolerance=abs(ffmin(ite-100,run)-fmin0);         
     end
     % displaying iterative results         
     if ite==1             
         fprintf('Iteration    Best particle    Objective fun\n');         
     end
     fprintf('%8g  %8g          %8.4f\n',ite,index,fmin0);
     ite=ite+1;     
    end
      % pso algorithm---------------------------------------------------end     
      gbest  
      fvalue=2.633*x(1)+2.992*x(2)+3.134*x(3)+3.678*x(4)+3.620*x(5)+2.948*x(6)+1.607*x(7)+2.952*x(8)+3.348*x(9)+3.680*x(10)+3.774*x(11)+2.995*x(12)+3.237*x(13)+1.608*x(14);
      fff(run)=fvalue     
      rgbest(run,:)=gbest;     
      fprintf('--------------------------------------\n'); 
end 
% pso main program------------------------------------------------------end 
fprintf('\n\n'); 
fprintf('*********************************************************\n'); 
fprintf('Final Results-----------------------------\n'); 
[bestfun,bestrun]=min(fff) 
best_variables=rgbest(bestrun,:) 
fprintf('*********************************************************\n'); 
toc
  % PSO convergence characteristic 
  plot(ffmin(1:ffite(bestrun),bestrun),'-k');
  xlabel('Iteration'); 
  ylabel('Fitness function value'); 
  title('PSO convergence characteristic') 
  %##########################################--------------------------end
2 Commenti
  Adam
      
      
 il 4 Dic 2018
				You should presize rgbest so it is the correct size before doing an assignment of that kind.
Risposte (0)
Vedere anche
Categorie
				Scopri di più su Particle Swarm in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!