What happen with confusion matrix ?
    9 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Oman Wisni
 il 21 Feb 2019
  
    
    
    
    
    Commentato: Oman Wisni
 il 22 Feb 2019
            Hi, Im trying to create confusion matrix, but the result in the green color or true class is not 100%, if the range 1-10 it should be 10,0% but I get 9,1%. please help me if I wrong? or explain why the result like this ?
here the code and result :
 targetsVector = ttes.'; % True classes
 outputsVector = pred_tes.'; % Predicted classes
 % Convert this data to a [numClasses x 55] matrix
 targets = zeros(11,55);
 outputs = zeros(11,55);
 targetsIdx = sub2ind(size(targets), targetsVector, 1:55);
 outputsIdx = sub2ind(size(outputs), outputsVector, 1:55);
 targets(targetsIdx) = 1;
 outputs(outputsIdx) = 1;
 plotconfusion(targets,outputs)

0 Commenti
Risposta accettata
  the cyclist
      
      
 il 22 Feb 2019
        It looks like you have 55 observations. 51 of them were classified correctly (along the diagonal, indicated in green). But 4 of them were misclassified -- two observations with target class 1, but were in output class 7 and two observations with target class 7, but where in output class 5.
Classifiers are not usually perfect, so misclassifications happen. Did you expect your classifier to be perfect? Why?
Più risposte (1)
  Kevin Chng
      
 il 22 Feb 2019
        
      Modificato: Kevin Chng
      
 il 22 Feb 2019
  
      Your Question:
The result in the green color or true class is not 100%, if the range 1-10 it should be 10,0% but I get 9,1%. 
You may find the detail of plotconfusion as below:
In the documentation, it stated : 
The diagonal cells correspond to observations that are correctly classified. The off-diagonal cells correspond to incorrectly classified observations. Both the number of observations and the percentage of the total number of observations are shown in each cell.
for example, at the first row and first column, the value is 3 and the percentage is 5.5%.
It means that there are 3 predicted observation classified as Class1, the percentage of 3 of all the observation is 5.5%.
3 Commenti
  Kevin Chng
      
 il 22 Feb 2019
				
      Modificato: Kevin Chng
      
 il 22 Feb 2019
  
			Yup, you are right,
3/55 = 5.5% means for the first row and first column.
About your question:
in this link the example result 10,0% but why  my result 9,1% ? 
The example is not your example. In the exmple,
There are 5000 observation in total, at the first row and first column,
The predicted observation in this class is 499, so that
499/5000 = 10%
but why  my result 9,1% ? 
In your matrix, at second row and second column, the predicted observation in this class is 5.
5/55 = 9.1%
Accept my answer if it help you.
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!