matlabのディー​プラーニングでは、な​ぜテストデータを使わ​ずにバリデーションデ​ータを使うのか

2 visualizzazioni (ultimi 30 giorni)
ssk
ssk il 7 Mar 2019
Commentato: ssk il 17 Mar 2019
プログラミング初心者です。
下記リンクにつきまして、
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7);
という一文がありますが、なぜ、テストデータを使わずにバリデーションデータを使うのでしょうか。
imdsValidationではなく、imdsTestだと納得できるのですが不思議です。
もしバリデーションデータを使うのであれば、テストデータは使わなくてもいいかご教示頂けますと幸いです。

Risposta accettata

Kenta
Kenta il 12 Mar 2019
単に、ここではバリデーションデータをテストデータと読み替えて問題ないと思います。また、以下のように、
[imdsTrain,imdsValidation, imdsTest] = splitEachLabel(imds,0.7,0.2);
などとして、画像を訓練、バリデーション、テストデータに分けると良いかもしれません。
リンクの学習曲線のところでは、バリデーションデータを使います。
そして、最後のところで
[YPred,probs] = classify(net,imdsTest);
accuracy = mean(YPred == imdsTest.Labels)
とすると、テストデータで正答率を計算できます。ここで、optionsのところに
'ValidationPatience', 3
を追加すれば学習の早期終了ができます。「'ValidationPatience' の値は、ネットワークの学習が停止するまでに、検証セットでの損失が前の最小損失以上になることが許容される回数です。」
とあります。学習がある程度のところで限界が来たらそこで学習がストップするので学習時間を短縮できたり、過学習が抑えられる可能性があります。
  11 Commenti
Kenta
Kenta il 17 Mar 2019
はい、それで正しいと思います。
ssk
ssk il 17 Mar 2019
ありがとうございます!

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!