Optimizing computing double integrals by elementwise matrix operations

2 visualizzazioni (ultimi 30 giorni)
Hi all,
I wrote my own function to calculate the double integral of a function, here referred to as 'fun(x,y)' between the boundaries x=[a,b] and y=[c,d]:
--------
function [ I ] = mydblquad( fun,a, b, c, d )
%MYDBLQUAD Summary of this function goes here
% Detailed explanation goes here
myquad = @(fun_int,a,b,tol,trace,varargin)quadgk(@(x)fun_int(x,varargin{:}),a,b,'AbsTol',tol);
I=dblquad(fun,a,b,c,d,1e-5,myquad);
end
---------
However, as the function I have to integrate is also function of two parameters 'n' and 'm', and as I have to compute this integral over a big set of values for 'n' and 'm', it becomes computationally ineffecient to compute all the integrals in two for-loops over 'n' and 'm'. Is there another possibility, such as computing dblquad not on one function, but on a set of functions arranged in a matrix depeding on 'n' and 'm'? A first try-out did not work.
What I would like to get is something like: I( n x m ) = mydblquad ( F( n x m) ), whereby you integrate over x and y
Thanks,
Bart

Risposta accettata

Sean de Wolski
Sean de Wolski il 14 Ago 2012
If you are using R2012a, consider using integral2
  1 Commento
Bart Boesman
Bart Boesman il 14 Ago 2012
I use both R2012a and R2011b. I used this quad function because I have to integrate from -Inf to Inf. Is there an alternative for R2011b?

Accedi per commentare.

Più risposte (1)

Bart Boesman
Bart Boesman il 16 Ago 2012
Hi,
As far as I've tried, using integral2 does not solve to problem. As I suspected you can't input a matrix to the function. Any other ideas to optimize this integral loops?
Thanks,
Bart
  1 Commento
Mike Hosea
Mike Hosea il 21 Ago 2012
Modificato: Mike Hosea il 21 Ago 2012
What you are trying to do requires a lot of work, and it is going to take some time. The computational efficiency of loops is NOT the problem. The problem is the problem. You can't speed this sort of thing up by vectorizing it. You can, however speed it up by parallelizing it, and it sounds to me like your problem is what we call "embarrassingly parallel".

Accedi per commentare.

Categorie

Scopri di più su Mathematics and Optimization in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by