Distance difference from center
6 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Mehmet Volkan Ozdogan
il 28 Mag 2019
Modificato: Mehmet Volkan Ozdogan
il 29 Mag 2019

Hi,
I created a cross section by using kmeans function from two different data (indicated by X and * in image),
My aim is to determine the distance difference of two data from center (o) of cross section,
Briefly i try to find the;
Distance between O and X (d1)
Than i need to find the nearest * to X,
Than calculate the distance between O and * (which is nearest X) (d2)
And lastly i need to calculate the difference between (d1) and (d2)
And i want to do this calculations for all X to * in cross-section.
Thank you...
My current code is given below: my points are represented by m,n and o in code...
clc;clear;
x=xlsread('king1.xlsx', 'A:A');
y=xlsread('king1.xlsx', 'B:B');
z=xlsread('king1.xlsx', 'C:C');
a=xlsread('king2.xlsx', 'A:A');
b=xlsread('king2.xlsx', 'B:B');
c=xlsread('king2.xlsx', 'C:C');
xyz=[x y z];
abc=[a b c];
rng(1);
[idx1,C1] = kmeans(xyz,100,'distance','sqEuclidean','MaxIter',500, 'Replicates', 10);
[idx2,C2] = kmeans(abc,100,'distance','sqEuclidean','MaxIter',500, 'Replicates', 10);
[dist,idx3] = pdist2(xyz, C1, 'euclidean', 'Smallest',1);
newVar = xyz(idx3 ,:);
plot3(newVar(:,1), newVar(:,2), newVar(:,3), 'bx');
hold on;
xlabel ('x - axis', 'fontsize', 12);
ylabel ('y - axis', 'fontsize', 12);
zlabel ('z - axis', 'fontsize', 12);
grid
[dist2,idx4] = pdist2(abc, C2, 'euclidean', 'Smallest',1);
newVar2 = abc(idx4 ,:);
plot3(newVar2(:,1), newVar2(:,2), newVar2(:,3), 'r*')
newVar3 = mean (newVar)
newVar4 = mean (newVar2)
newVar5 = (newVar3 + newVar4)/ 2
plot3(newVar5(:,1), newVar5(:,2), newVar5(:,3), 'go');
m=[newVar(:,1) newVar(:,2) newVar(:,3)];
n=[newVar2(:,1) newVar2(:,2) newVar2(:,3)];
o=[newVar5(:,1) newVar5(:,2) newVar5(:,3)];
2 Commenti
Risposta accettata
darova
il 28 Mag 2019
I did this
xyz0 = (mean(xyz)+mean(abc))/2; % O point
XYZ0 = repmat(xyz0,size(xyz,1),1); % duplicate rows
d1 = XYZ0 - xyz; % Distance(s) between O and X (d1)
% find the nearest * to X
D = pdist2(xyz,abc); % every possible combinations
D(D==0) = max(D(:)); % fill zeros with max ( (:) - convert matrix to column vector )
[~,ind] = min(D(:)); % find index of min element
% Found index of min element in vector. Find correspoding indices of points
[i,j] = ind2sub(size(D),ind); % extract row and column (i - index of xyz, j - index of abc)
% calculate the distance between O and * (which is nearest X) (d2)
d2 = xyz0 - abc(j,:); % difference between O point and * (nearest X)
D2 = repmat(d2,size(d2,1),1); % duplicate rows
d = D2 - d1; % distance(s) between d2 and d1
5 Commenti
Più risposte (1)
e_oksum
il 29 Mag 2019
hi mehmet, here is an example code performing what you explained,
example uses random positions, you can adopt by yours..and also simplify it for more compact without plotting etc..
X=rand(1,10)*10 ;% your x position of X
Y=rand(1,10)*10 ;% your y position of X
xs=rand(1,10)*10 ;% your x position of *
ys=rand(1,10)*10 ;% your y position of *
xo=5 ;% center x
yo=5 ;% center y
plot(X,Y,'ro','markerfacecolor','r');
hold on
plot(xs,ys,'k+');
plot(xo,yo,'go','markerfacecolor','g');
for i=1:numel(X)
d1(i)=sqrt((X(i)-xo).^2+(Y(i)-yo).^2);% distance d1 of X(i) Y(i) to center
%find position of nearest xs,ys to X,Y
L=sqrt((xs-X(i)).^2 + (ys-Y(i)).^2);
idx=find(L==min(L));
xp(i)=xs(idx); %(xp yp are the nearest nearest X)
yp(i)=ys(idx);
d2(i)=sqrt((xp(i)-xo).^2 + (yp(i)-yo).^2); % distance d2 of nearest xp yp to X(i),Y(i)
diffd1d2(i)=(d1(i)-d2(i)); % diffrence between d1 d2
% check by plot
l1=plot([X(i) xo],[Y(i) yo],'-r'); % line d1
l2=plot([xp(i) xo],[yp(i) yo],'-k'); % line d2
pause(1)
delete(l1)
delete(l2)
end
list=[X' Y' xp' yp' d1' d2' diffd1d2']
Vedere anche
Categorie
Scopri di più su Logical in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!