Best fit an Ellipse from Imperfect Data and determine outer boundary as u show on this picture and this code ,I want the code achievement the plot in the figure
5 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
function ellipse_t = fit_ellipse( x,y,d,g )
% initialize
orientation_tolerance = 1e-3;
% empty warning stack
warning( '' );
% prepare vectors, must be column vectors
X=xlsread('Xiong',1,'G3:G584')
Y=xlsread('Xiong',1,'H3:H584')
x=X(:);
y=Y(:);
% remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
mean_x = mean(x);
mean_y = mean(y);
x = x-mean_x;
y = y-mean_y;
% the estimation for the conic equation of the ellipse
X = [x.^2, x.*y, y.^2, x, y ];
a = sum(X)/(X'*X);
% check for warnings
if ~isempty( lastwarn )
disp( 'stopped because of a warning regarding matrix inversion' );
ellipse_t = [];
return
end
% extract parameters from the conic equation
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
% remove the orientation from the ellipse
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
orientation_rad = 1/2 * atan( b/(c-a) );
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
[a,b,c,d,e] = deal(...
a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
0,...
a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
d*cos_phi - e*sin_phi,...
d*sin_phi + e*cos_phi );
[mean_x,mean_y] = deal( ...
cos_phi*mean_x - sin_phi*mean_y,...
sin_phi*mean_x + cos_phi*mean_y );
else
orientation_rad = 0;
cos_phi = cos( orientation_rad );
sin_phi = sin( orientation_rad );
end
% check if conic equation represents an ellipse
test = a*c;
switch (1)
case (test>0), status = '';
case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
end
% if we found an ellipse return it's data
if (test>0)
% make sure coefficients are positive as required
if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
% final ellipse parameters
X0 = mean_x - d/2/a;
Y0 = mean_y - e/2/c;
F = 1 + (d^2)/(4*a) + (e^2)/(4*c);
[a,b] = deal( sqrt( F/a ),sqrt( F/c ) );
long_axis = 2*max(a,b);
short_axis = 2*min(a,b);
% rotate the axes backwards to find the center point of the original TILTED ellipse
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
P_in = R * [X0;Y0];
X0_in = P_in(1);
Y0_in = P_in(2);
% pack ellipse into a structure
ellipse_t = struct( ...
'a',a,...
'b',b,...
'phi',orientation_rad,...
'X0',X0,...
'Y0',Y0,...
'X0_in',X0_in,...
'Y0_in',Y0_in,...
'long_axis',long_axis,...
'short_axis',short_axis,...
'status','' );
else
% report an empty structure
ellipse_t = struct( ...
'a',[],...
'b',[],...
'phi',[],...
'X0',[],...
'Y0',[],...
'X0_in',[],...
'Y0_in',[],...
'long_axis',[],...
'short_axis',[],...
'status',status );
end
% check if we need to plot an ellipse with it's axes.
%if (nargin>2) & ~isempty( axis_handle ) & (test>0)
% rotation matrix to rotate the axes with respect to an angle phi
R = [ cos_phi sin_phi; -sin_phi cos_phi ];
% the axes
ver_line = [ [X0 X0]; Y0+b*[-1 1] ];
horz_line = [ X0+a*[-1 1]; [Y0 Y0] ];
new_ver_line = R*ver_line;
new_horz_line = R*horz_line;
% the ellipse
theta_r = linspace(0,2*pi);
ellipse_x_r = X0 + a*cos( theta_r );
ellipse_y_r = Y0 + b*sin( theta_r );
xaligned_ellipse = [ellipse_x_r;ellipse_y_r];
rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
% draw
hold on
plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' )
d=xlsread('Xiong',1,'G3:G584')
g=xlsread('Xiong',1,'H3:H584')
plot(d,g,'g')
xlabel('x')
ylabel('y');
title('target 4')
drawnow
ellipse_t.xaligned_ellipse = xaligned_ellipse;
ellipse_t.rotated_ellipse = rotated_ellipse;
ellipse_t.ellipse_x_r = ellipse_x_r;
ellipse_t.ellipse_y_r = ellipse_y_r;
ellipse_t.R = R;
end
0 Commenti
Risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!