deep learning 回帰学習データセットの作成方法

5 visualizzazioni (ultimi 30 giorni)
masakazu sugino
masakazu sugino il 11 Giu 2020
Commentato: Kenta il 26 Giu 2020
画像分類には,imagedatastoreを用いて,ラベルごとに画像を学習させていたのですが,
回帰学習に応用する場合にはclassificationlayer→regressionLayerに変換した上で,同様に画像入力の際にはimagedatastoreを使用できるのでしょうか.
また,各画像のラベルつけはどのようにしたら良いでしょうか.
上記の回帰のデータセットの作成時のように,画像とラベルを4次元配列にする必要があるのでしょうか.

Risposta accettata

Kenta
Kenta il 11 Giu 2020
Modificato: Kenta il 14 Giu 2020
こんにちは、回帰の場合には、imagedatastoreではなく、画像を4次元配列にしたほうが簡単だと思います。その場合、正解ラベルはn×1のベクトルとして用意すれば大丈夫です。
ただ、datastoreにtransform関数を作用させて画像からの回帰をすることも可能かとは思います。ただ、コーディングの上で少し煩雑になる気もして、比較的簡単にできる、4次元配列を用いた回帰のほうがよいと思います。ただ、大規模なデータセットで行うとメモリに乗りきらない恐れもあるかと思います。
  4 Commenti
masakazu sugino
masakazu sugino il 26 Giu 2020
私の理解が足りていないのかもしれないので,確認したいのですが,4次元配列は(画像の縦(~pixels),画像の横(~pixels),RGB(1or3),入力画像の数)でよいのでしょうか.
Kenta
Kenta il 26 Giu 2020
はい、そうです。

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su イメージを使用した深層学習 in Help Center e File Exchange

Prodotti


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!