Can someone provide me the theory and math behind this function of eigen?
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Atik Faysal
il 23 Set 2020
Risposto: Steven Lord
il 23 Set 2020
[V,D] = eig(A,B)
returns diagonal matrix D of generalized eigenvalues and full matrix V whose columns are the corresponding right eigenvectors, so that A*V = B*V*D.
2 Commenti
Bjorn Gustavsson
il 23 Set 2020
For a more exheustive introduction with some more details you can turn to: Eigenvalues and eigenvectors at wikipedia and Generalized eigenvectors.
Risposta accettata
Bruno Luong
il 23 Set 2020
Modificato: Bruno Luong
il 23 Set 2020
for each column number j,
A*V = B*V*D
implies
A*xj = lambdaj*B*xj
where
xj = V(:,j)
lambdaj = D(j,j)
This is just a generalization of normal eigen value problem.
A*xj = lambdaj*xj
If B is invertible, V and D is the same as standard eigen vectors/values of M := inv(B)*A.
0 Commenti
Più risposte (1)
Steven Lord
il 23 Set 2020
You might find the "Eigenvalues and Singular Values" chapter in Cleve Moler's Numerical Computing with MATLAB, available here, useful.
0 Commenti
Vedere anche
Categorie
Scopri di più su Linear Algebra in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!