detrend using cubic splines

15 visualizzazioni (ultimi 30 giorni)
Venkatessh
Venkatessh il 8 Feb 2013
Commentato: Bruno Luong il 17 Ott 2018
How can I detrend a time series using cubic spline interpolation? I would like to get this done over for eg., 0.2 year bins.

Risposta accettata

Shashank Prasanna
Shashank Prasanna il 8 Feb 2013
Venkatessh, detrending is just a process of removing long term deterministic patterns or in short trends. For example your data may look like it is exponentially increasing, but with variation. You are more interested in the variation because the exponential increase renders the data non-stationary.
It is as simple as fitting your data to the best possible curve and subtracting it from your data.
Simple example:
Generate data and get a spline fitted trend:
x = 0:100;
y = 100*randn(1,length(x))+x.^2;
xx = 0:10:100;
yy = spline(x,y,xx);
Substract the trend from your original data and plot the detrended variation sequence.
ytrend = interp1(xx,yy,x,'spline');
subplot(2,1,1)
plot(x,y,'.',x,ytrend);
subplot(2,1,2)
plot(x,y-ytrend)
  18 Commenti
Shashank Prasanna
Shashank Prasanna il 8 Feb 2013
Honestly, I don't know if there is a definition written on stone somewhere east of here, but that is atleast the accepted convention. All the following methods fit into the non-parametric model framework: Splines, Neural Networks, SVM (and other kernel estimators), regression trees etc
Anyway this made for a nice discussion. I wish this topic wasn't embedded in another post, would loved to have see more responses.
Image Analyst
Image Analyst il 8 Feb 2013
I'm not sure what "I need to be very careful in discarding the data. " means. Of course any type of fitting, regression, or detrending is going to discard data. Even though the data may go into creating the fit, eventually the data is going to be discarded and replaced by the fitted/estimated/smoothed values. If you didn't want to do that, you'd just keep your original data. So you are going to discard data and replace it - the only issue to decide is how much to smooth the data.

Accedi per commentare.

Più risposte (2)

Matt J
Matt J il 8 Feb 2013
Modificato: Matt J il 8 Feb 2013
Here's an example of how to do a cubic spline regression using interpMatrix. You would have to choose how finely you wanted to space the control points, which would affect the stiffness of the spline fit. In the example, the control points occur every 9 samples. After obtaining the 'trend' you would of course subtract it off the original time series to detrend it.
s = @(t) cos(2*pi*t).*exp(-abs(2*t))+ 2; %timeseries to fit
cubicBspline = @(t) (t>-1 & t<1).*(2/3 - t.^2 +abs(t).^3/2) +...
(abs(t)>=1 & abs(t)<2).*((2-abs(t)).^3/6);
tCtrlPts=linspace(-1.2, 1.2,9); %CtrlPts sample locations on t-axis
dtCtrlPts=tCtrlPts(2)-tCtrlPts(1);
tFine=linspace(-1.2, 1.2,81); %Fine sample locations on t-axis
dtFine=tFine(2)-tFine(1);
timeseries=s(tFine(:));
%create regression matrix
SampRatio=round(dtCtrlPts/dtFine); %Sampling ratio
kernel=cubicBspline(-2:1/SampRatio:2 );
nCtrlPts=length(tCtrlPts);
A=interpMatrix(kernel, 'max', nCtrlPts, SampRatio, 'mirror');
%%Do the fit!!!
trend = A*(A\timeseries);
plot(tFine,timeseries,tFine,trend,'*-');
legend('Time Series','Fitted Trend')
  2 Commenti
Venkatessh
Venkatessh il 8 Feb 2013
This is a clinical approach to the solution. Thanks.
Image Analyst
Image Analyst il 8 Feb 2013
What does that mean?

Accedi per commentare.


Image Analyst
Image Analyst il 8 Feb 2013
Because a spline is an interpolation rather than a regression, and so it goes through all the points, I don't see how it could detrend. Why not use detrend() or sgolay()?
  2 Commenti
SAAlly
SAAlly il 17 Ott 2018
Modificato: SAAlly il 17 Ott 2018
Hi there, if you look at Shashank Prasanna's answer you'll notice x has a step of 1, while xx has a step of 10. Therefore the spline would only go through every tenth point.
Bruno Luong
Bruno Luong il 17 Ott 2018
It's still an arbitrary and poor choice IMO.

Accedi per commentare.

Categorie

Scopri di più su Spline Postprocessing in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by