Adjust measurement data with different vector lengths using interpolation
    13 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
I have carried out various series of measurements from which I would like to form arithmetic mean values.
The problem is that one series of measurements has 1200 data points (Vector_1), the second only 1000 (Vector_2) and the third 800 data points (Vector_3). 
I tried to adapt this to the largest vector using interpolation:
maxLength = max([length(Vector_1), length(Vector_2), length(Vector_2)]);
xFit = 1:maxLength;
IP_Vector_1 = interp1(1:length(Vector_1), Vector_1, xFit);
IP_Vector_2 = interp1(1:length(Vector_2), Vector_2, xFit);
IP_Vector_3 = interp1(1:length(Vector_3), Vector_3, xFit);
However, this code does not seem to distribute the interpolation evenly, but rather puts it at the end (with NaN). Does anyone have any idea what the problem is or have another suggestion how that could be solved elegantly in Matlab?
Many Thanks!
2 Commenti
  David Hill
      
      
 il 26 Gen 2021
				Do you just want the mean of all your data? I don't understand your question.
mean([Vector1,Vector_2,Vector_3]);
Risposta accettata
  Jan
      
      
 il 26 Gen 2021
        
      Modificato: Jan
      
      
 il 26 Gen 2021
  
      n1 = length(Vector_1);
n2 = length(Vector_2);
n3 = length(Vector_3);
nMax = max([n1, n2, n3]);
IP_Vector_1 = interp1(1:n1, Vector_1, linspace(1, n1, nMax));
IP_Vector_2 = interp1(1:n2, Vector_2, linspace(1, n2, nMax));
IP_Vector_3 = interp1(1:n3, Vector_3, linspace(1, n3, nMax));
Now the vectors have all nMax steps. Interpolating a vector with x=1:10 at the steps x = 1:20 appends 10 NaNs, because thius is an extrapolation. You need the interval [1, 10] split into nMax steps instead:
1:((10 - 1) / (nMax - 1)):10
% or nicer:
linspace(1, 10, nMax)
Note 1: Normalizing with linear interpolation can destroy important information, if the sampling frequency is low:
v1 = [1, 10, 1];
v2 = [1, 1, 1, 1];
vi1 = interp1(1:n1, v1, linspace(1, n1, nMax))   % [1, 7, 7, 1]
vi2 = interp1(1:n2, v2, linspace(1, n2, nMax))   % [1, 1, 1, 1]
The large peak in v1 is damped. So it is a better idea to use nMax = q * max([n1, n2, n3]) with q = 2 or 5. In a smart program this factor is implemented as variable such that you can compare the results for different scaling factors.
Note 2: If this is time-ciritical, use FEX: ScaleTime, which interpolates faster than INTERP1 or GriddedInterpolant.
Più risposte (0)
Vedere anche
Categorie
				Scopri di più su Large Files and Big Data in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!