Distribution graph velocity : how to make simple paraboloid of revolution?
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello Guys,
I have a simple problem. You remember the mechanics of fluids? To calculate the velocity distribution in a circular tube (actual fluid) use the equation "u" and then to further develop the known Hagen-Poiseuille equation. If we consider the tube without inclination have this equation:
u = (-N 2 - R 2) / 4 * mi
if I assign values to 'r' and 'mi', we have a paraboloid of revolution that describes the velocity distribution of the fluid in the tube. How can I make this chart in matlab?
See the example:
a = [-50:50];
u = -((a.^2-(0.001^2))/(4*1.485));
plot(u,a)
or
syms x
ezplot(-((a^2-0.001^2)/(4*1.485)))
I put an fig in attach
Thank you in advance for all the help!
0 Commenti
Risposta accettata
Youssef Khmou
il 26 Mag 2013
Modificato: Youssef Khmou
il 26 Mag 2013
hi,
i think your method works for this type of problems, try :
N=40; % Discretization
Vmax=20; % 20m/s
xc=0;
yc=0;
zc=0;
R=0.5; % radius of the tube
[x,y,z]=ellipsoid(xc,yc,zc,R,R,Vmax,N);
z(z<0)=0; % trick to truncate the unwanted elements
figure, surf(x,y,z), shading interp
xlabel('X axis (m)');
ylabel(' Y axis (m)');
zlabel(' Velocity (m/s)');
title(' Velocity profile');
Più risposte (3)
Youssef Khmou
il 25 Mag 2013
hi here is an example before staring to answer the problem :
the veolcity is defined as :
V(r)= Vmax*(1-r²/R²), R is the radius of the tube :
R=.50 ; %radius in meters:
r=linspace(-R,R,30); % varying radius
Vmax=20 ; % suppose that the maximum velocity of fluid is 20 m/s
V=Vmax*(1-r.^2/R^2);
figure, bar(r,V);
figure, plot(V,r); xlabel(' Velocity'),ylabel(' varying radius')
6 Commenti
Vedere anche
Categorie
Scopri di più su Calculus in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!