Problem 113. N-Queens Checker
Picture a chessboard populated with a number of queens (i.e. pieces that can move like a queen in chess). The board is a matrix, a, filled mostly with zeros, while the queens are given as ones. Your job is to verify that the board is a legitimate answer to the N-Queens problem. The board is good only when no queen can "see" (and thus capture) another queen.
Example
The matrix below shows two queens on a 3-by-3 chessboard. The queens can't see each other, so the function should return TRUE.
1 0 0 0 0 1 0 0 0
Here is a bigger board with more queens. Since the queens on rows 3 and 4 are adjacent along a diagonal, they can see each other and the function should return FALSE.
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
The board doesn't have to be square, but it always has 2 or more rows and 2 or more columns. This matrix returns FALSE.
1 0 0 0 0 0 0 0 1 1
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers306
Suggested Problems
-
1776 Solvers
-
1344 Solvers
-
What is the distance from point P(x,y) to the line Ax + By + C = 0?
554 Solvers
-
Find a subset that divides the vector into equal halves
398 Solvers
-
Right Triangle Side Lengths (Inspired by Project Euler Problem 39)
2025 Solvers
More from this Author50
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!