Problem 52804. Easy Sequences 29: Odd proper divisors of odd proper divisors
The number is special. It has odd number of proper divisors: . Furthermore, if you take any of its proper divisors, say , it too has odd number of proper divisors: . The numbers and , have similar property as .
Given a limit n, find how many integers , have similar property as 210, namely, the integers should have odd number of proper divisors and all its proper divisors have odd number of proper divisors, as well.
The number , does not qualify because it has even proper divisors, 8 in total . The number also doesn't qualify because although it has proper divisors, some of its divisor, like , have even number of proper divisors.
NOTE: A proper divisor of a number, is a divisor which is less than the number. Exception to this rule is the number 1, which is considered a proper divisor of itself.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers5
Suggested Problems
-
2347 Solvers
-
Remove the polynomials that have positive real elements of their roots.
1673 Solvers
-
Project Euler: Problem 1, Multiples of 3 and 5
3169 Solvers
-
109 Solvers
-
Easy Sequences 25: Product of Series
16 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!