Given a vector:
[1 0 -1 3 2 -3 1]
and a window of 2,
A sliding window would find:
1 + 0 = 1 0 - 1 = -1 -1 + 3 = 2 3 + 2 = 5 2 - 3 = -1 -3 + 1 = -2
Meaning that three of the windows were positive.
Given a vector and a window, how many of the windows sum to be positive, not zero or negative?
Solution Stats
Problem Comments
5 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers870
Suggested Problems
-
1219 Solvers
-
244 Solvers
-
Rotate input square matrix 90 degrees CCW without rot90
679 Solvers
-
382 Solvers
-
1210 Solvers
More from this Author51
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I think test suite 3 produces 4 positives, not 3.
I agree with the above comments
Oops. Fixed. thank you.
Test suite 3 doesn't seem to be correct. Total windows possible in this case is 2. How can number of positive windows be greater than that. Someone please clarify.
cool