Problem 734. Ackermann's Function
Ackermann's Function is a recursive function that is not 'primitive recursive.'
The first argument drives the value extremely fast.
A(m, n) =
- n + 1 if m = 0
- A(m − 1, 1) if m > 0 and n = 0
- A(m − 1,A(m, n − 1)) if m > 0 and n > 0
A(2,4)=A(1,A(2,3)) = ... = 11.
% Range of cases % m=0 n=0:1024 % m=1 n=0:1024 % m=2 n=0:128 % m=3 n=0:6 % m=4 n=0:1
There is some deep recusion.
Input: m,n
Out: Ackerman value
Ackermann(2,4) = 11
Practical application of Ackermann's function is determining compiler recursion performance.
Solution Stats
Problem Comments
-
2 Comments
Richard Zapor
on 5 Jun 2012
Solution 15 is, to me, a novel cell array index implementation.
Jean-Marie Sainthillier
on 19 Jul 2013
Efficiently to crash my Matlab.
Solution Comments
Show commentsProblem Recent Solvers74
Suggested Problems
-
2453 Solvers
-
2391 Solvers
-
348 Solvers
-
1514 Solvers
-
Find last zero for each column
595 Solvers
More from this Author308
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!