Problem 81. Mandelbrot Numbers
z(1) = c
z(n+1) = z(n)^2 + c
For any complex c, we can continue this iteration until either abs(z(n+1)) > 2 or n == lim, then return the iteration count n.
- If c = 0 and lim = 3, then z = [0 0 0] and n = 3.
- If c = 1 and lim = 5, then z = [1 2], and n = length(z) or 2.
- If c = 0.5 and lim = 5, then z = [0.5000 0.7500 1.0625 1.6289] and n = 4.
For a matrix of complex numbers C, return a corresponding matrix N such that each element of N is the iteration count n for each complex number c in the matrix C, subject to the iteration count limit of lim.
If C = [0 0.5; 1 4] and lim = 5, then N = [5 4; 2 1]
Solution Stats
Problem Comments
-
8 Comments
Show
5 older comments
Shlomo Geva
on 28 Nov 2020
Broken ink to Cleve Moler's PDF
goc3
on 30 Nov 2020
Thanks for noticing that, @Shlomo Geva. The link has been fixed.
Andreas
on 17 Jul 2023
Really nice problem, and great very simple solution by the community.
Solution Comments
Show commentsProblem Recent Solvers1752
Suggested Problems
-
263 Solvers
-
Construct an index vector from two input vectors in vectorized fashion
410 Solvers
-
Check if number exists in vector
12753 Solvers
-
Pernicious Anniversary Problem
824 Solvers
-
658 Solvers
More from this Author96
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!