DaPC NN: Deep Arbitrary Polynomial Chaos Neural Network
Cita come
Sergey Oladyshkin (2025). DaPC NN: Deep Arbitrary Polynomial Chaos Neural Network (https://it.mathworks.com/matlabcentral/fileexchange/112110-dapc-nn-deep-arbitrary-polynomial-chaos-neural-network), MATLAB Central File Exchange. Recuperato .
Oladyshkin, S., and W. Nowak. “Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion.” Reliability Engineering &Amp\Mathsemicolon System Safety, vol. 106, Elsevier BV, Oct. 2012, pp. 179–90, doi:10.1016/j.ress.2012.05.002.
Oladyshkin, Sergey, and Wolfgang Nowak. “Incomplete Statistical Information Limits the Utility of High-Order Polynomial Chaos Expansions.” Reliability Engineering &Amp\Mathsemicolon System Safety, vol. 169, Elsevier BV, Jan. 2018, pp. 137–48, doi:10.1016/j.ress.2017.08.010.
Oladyshkin S., Praditia T., Kroeker I., Mohammadi F., Nowak W., Otte S., The Deep Arbitrary Polynomial Chaos Neural Network or how Deep Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos Theory. Neural Networks. Elsevier, 2023. DOI: 10.1016/j.neunet.2023.06.036.
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxTag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
DaPC NN Matlab Toolbox
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0 | The current beta version utilizes MATLAB’s custom layer structure, enabling automatic differentiation and providing access to the advanced training options available within MATLAB. |
|
|
| 0.0.4 | Multivariate Polynomial Degrees |
|
|
| 0.0.3 | Alpha Version 0.0.3 |
|
|
| 0.0.2 | Alpha Version 0.0.2 |
|
|
| 0.0.1 |
