Tutorial: Bayesian Optimization
Versione 1.0.0 (4,02 KB) da
Karl Ezra Pilario
1D and 2D black-box Bayesian optimization demonstration with visualizations.
This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.
[2] Frazier (2018). https://arxiv.org/abs/1807.02811
[3] Snoek (2012). https://arxiv.org/pdf/1206.2944.pdf
Cita come
Karl Ezra Pilario (2026). Tutorial: Bayesian Optimization (https://it.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2022a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxTag
Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0 |
