Tutorial: Bayesian Optimization

1D and 2D black-box Bayesian optimization demonstration with visualizations.
602 download
Aggiornato 13 lug 2022

Visualizza la licenza

This code shows a visualization of each iteration in Bayesian Optimization. MATLAB's fitrgp is used to fit the Gaussian process surrogate model, then the next sample is chosen using the Expected Improvement acquisition function. An exploitation-exploration parameter can be changed in the code. The code contains both 1D and 2D "black-box" functions for optimization.
References:
[1] Rasmussen and Williams (2006). "Gaussian Processes for Machine Learning," MIT Press.

Cita come

Karl Ezra Pilario (2026). Tutorial: Bayesian Optimization (https://it.mathworks.com/matlabcentral/fileexchange/114950-tutorial-bayesian-optimization), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2022a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Versione Pubblicato Note della release
1.0.0