mRMR Feature Selection (using mutual information computation)
Nessuna licenza
This package is the mRMR (minimum-redundancy maximum-relevancy) feature selection method in (Peng et al, 2005 and Ding & Peng, 2005, 2003), whose better performance over the conventional top-ranking method has been demonstrated on a number of data sets in recent publications. This version uses mutual information as a proxy for computing relevance and redundancy among variables (features). Other variations such as using correlation or F-test or distances can be easily implemented within this framework, too.
Hanchuan Peng, Fuhui Long, and Chris Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 27, No. 8, pp.1226-1238, 2005. [PDF]
Ding C., and Peng HC, "Minimum redundancy feature selection from microarray gene expression data," Journal of Bioinformatics and Computational Biology,
Vol. 3, No. 2, pp.185-205, 2005. [PDF]
Ding, C and Peng HC, Proc. 2nd IEEE Computational Systems Bioinformatics Conference (CSB 2003),
pp.523-528, Stanford, CA, Aug, 2003.
Cita come
Hanchuan Peng (2025). mRMR Feature Selection (using mutual information computation) (https://www.mathworks.com/matlabcentral/fileexchange/14608-mrmr-feature-selection-using-mutual-information-computation), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Riconoscimenti
Ispirato: Backpropagation-based Multi Layer Perceptron Neural Networks
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
mRMR_0.9_compiled/
mRMR_0.9_compiled/mi_0.9/
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 | correct some typos |