First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07)
Nessuna licenza
[DESCRIPTION]
First-order-degree linear differential and non-homogeneous equation's solution possible the unknown integration multipler technique. Also, this simple technique's depend both sides of original homogeneous differential equation. The solution is slightly and more complicated if this integration into special form to be very complex. In this application's selected Ig=x^a.y^b integration multiplier technique for non-homogeneous form.
[SYNTAX]
DIfactor( [ f1(x,y) , f2(x,y)] , flag )
f1(x,y) : Non-homogeneous differential equation's M(x,y) function
f2(x,y) : Non-homogeneous differential equation's N(x,y) function
flag : If flag=1 than solution be perceive application else small solution
General differential equation's
[M(x,y)]dx + [N(x,y)]dy = 0
[EXAMPLE]
[2*x^3*y^4 - 5*y]dx + [x^4*y^3 - 7*x]dy = 0
M(x,y)= f1(x,y) = [2*x^3*y^4 - 5*y]
N(x,y)= f2(x,y) = [x^4*y^3 - 7*x]
Matlab sub function application
DIfactor( [2*x^3*y^4 - 5*y , x^4*y^3 - 7*x] , 1) ;
[ZIP ARCHIVE]
Example1.pdf (Analytical solution)
Example2.pdf
Example3.pdf
DIfactor.m (sub function Matlab)
example.m (run sub function)
example.html
[REFERENCES]
[1] Differential equations,PhD.Frank Ayres, Schaum's outline series and McGraw-Hill Company ,1998
[2] Mathematical handbook of formulas and tables,PhD. Murray R. Spiegel, PhD. John Liu, Second edition,McGraw-Hill book company,2001,ISBN:0-07-038203-4
[3] Differansiyel denklemler, Yrd.Do?.Dr. A.Ne?e Dernek, Do?.Dr.Ahmet,Dernek, Marmara university,Deniz book publisher,Istanbul,1995
Cita come
Ali OZGUL (2024). First-Order Degree Linear Differential Equations (Integration factor Ig=x^a*y^b) (Update: 23-06-07) (https://www.mathworks.com/matlabcentral/fileexchange/15408-first-order-degree-linear-differential-equations-integration-factor-ig-x-a-y-b-update-23-06-07), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Riconoscimenti
Ispirato da: Jean Le Rand D'Alambert Reduction Method (update:22-06-07)
Ispirato: Regular solving technique as sub-function (update:24-07-07), Non-homogeneous and linear-differential-equation solutions (update:13-07-07)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 |