Bayesian parametric survival analysis with the fused lasso

Versione 1.0.0 (2,65 MB) da Statovic
Bayesian parametric survival analysis for proportional hazards regression.
19 download
Aggiornato 28 giu 2024

Visualizza la licenza

This toolbox implements a Bayesian parametric proportional hazards regression model for right-censored survival data (see also Royston and Parmar 2002). The underlying baseline hazard function is modelled via integrated splines to guarantee monotonicity. The Bayesian fused lasso prior distribution is used to control smoothness of the baseline hazard function estimate and to select important covariates. To obtain samples from the posterior distribution, we use Hamiltonian Monte Carlo in conjunction with the Proximal MCMC algorithm (Zhou et al. 2024). Usage examples are included (see example?.m).

Cita come

Statovic (2025). Bayesian parametric survival analysis with the fused lasso (https://it.mathworks.com/matlabcentral/fileexchange/168941-bayesian-parametric-survival-analysis-with-the-fused-lasso), MATLAB Central File Exchange. Recuperato .

Zhou, Xinkai, et al. “Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation.” The American Statistician, Informa UK Limited, Feb. 2024, pp. 1–12, doi:10.1080/00031305.2024.2308821.

Visualizza più stili

Royston, Patrick, and Mahesh K. B. Parmar. “Flexible Parametric Proportional‐Hazards and Proportional‐Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine, vol. 21, no. 15, Wiley, July 2002, pp. 2175–97, doi:10.1002/sim.1203.

Visualizza più stili
Compatibilità della release di MATLAB
Creato con R2024a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Tag Aggiungi tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0