LU decomposition
Versione 1.0.0 (1,79 KB) da
Umar
By running the provided code with a suitable matrix input, you can obtain the lower and upper triangular matrices resulting from LU decompos
%After saving the function, you can test it with a sample
%matrix shown below
%q=[2 1 -1;5 0 2;9 1 0];
%[L,U]=lumine(q);
%disp(L); %display the lower matrix
%disp(U); %display the upper matrix
function [L,U]=lumine(A)
%This function performs LU decomposition on a coefficient
%matrix A,the function takes A as input and returns the
%lower matrix L and uppermatrix U
[m,n]=size(A); %defines m and n
if m~=n %checks if the matrix is square
error('Matrix A must be square');
end
if det(A)==0 % checks if the matrix is singular
error('Matrix cannot be singular');
end
%Initialize L as an identity matrix and
%U as A
L=eye(n);
U=A;
for k=1:n
for i=k+1:n
factor=U(i,k)/U(k,k);
U(i,k:n)-factor*U(k:k,n);
L(i,k)=factor;
end
end
%The diagonal of L should be set to 1(identity property
for i=1:n
L(i,i)=1;
end
end
Cita come
Umar (2024). LU decomposition (https://www.mathworks.com/matlabcentral/fileexchange/171159-lu-decomposition), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2024a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxTag
Riconoscimenti
Ispirato da: Linear Algebra LABS with MATLAB, 2e
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |