lmcurvefit

curve fitting using Levenberg Marquardt algorithm
11 download
Aggiornato 17 set 2024

Visualizza la licenza

% the following examples are available here
% https://www.mathworks.com/help/optim/ug/lsqcurvefit.html
% you can compare to the result from lmcurvefit to that of inbuilt matlab
% function lsqcurvefit
%% Example 1 (Unconstrained Curve Fitting)
close all
xdata = [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3]';
ydata = [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5]';
x0 = [100;-1];
times = linspace(xdata(1),xdata(end))';
scatter(xdata, ydata, 'o'); hold on;
plt = plot(times, myfun1(x0, times), 'r');
model = @(x,xdata) myfun1(x, xdata, times, plt);
[x_lm, ~, ~, ~, output] = lmcurvefit(model, x0, xdata, ydata,[],[],[],[])
%% Example 2 (Box Constrained Curve Fitting)
close all
xdata = linspace(0, 3)';
ydata = exp(-1.3*xdata)+0.05*rand(size(xdata));
lb = [0;-2];
ub = [3/4; -1];
x0 = [1/2;-2];
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun2(x0, xdata), 'r');
model = @(x,xdata) myfun2(x, xdata, xdata, plt);
[x_lm, ~, resnorm_lm, residual_lm, output] = ...
lmcurvefit(model, x0, xdata, ydata, [], [], lb, ub);
%% Example 3 (Linear InEquality Constraint)
close all; clc
rng default
xdata = linspace(2,7)';
ydata = myfun3([2,4,5,0.5]',xdata) + 0.1*randn(size(xdata));
lb = zeros(4,1);
ub = 7*ones(4,1);
A = [-1 -1 1 1];
b = 0;
startpt = [1 2 3 1]';
options = optimoptions(@lsqcurvefit, Display='iter');
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun3(startpt,xdata), 'r');
fineq = @(x)A*x - b;
fun = @(x, xdat) myfun3(x,xdat, plt);
[x_lm, ~, resnorm_lm, residual_lm, output_lm] = ...
lmcurvefit(fun, startpt, xdata, ydata, fineq, [], lb, ub);
%% Example 4 (Nonlinear InEquality Constraint)
close all; clc
rng default
xdata = linspace(2,7)';
ydata = myfun3([2,4,5,0.5]',xdata) + 0.1*randn(size(xdata));
lb = zeros(4,1);
ub = 7*ones(4,1);
startpt = [1 2 3 1]';
options = optimoptions(@lsqcurvefit, Display='iter');
scatter(xdata, ydata, 'o'); hold on;
plt = plot(xdata, myfun3(startpt,xdata), 'r');
fineq = @(x)x(1)^2 + x(2)^2 - 4^2;
fun = @(x, xdat) myfun3(x,xdat, plt);
[x_lm, ~, resnorm_lm, residual_lm, output_lm] = ...
lmcurvefit(fun, startpt, xdata, ydata, fineq, [], lb, ub);
%% model functions
function F = myfun1(x,xdata, times, plt)
F = x(1)*exp(x(2)*xdata);
if(nargin > 2)
plt.YData = x(1)*exp(x(2)*times);
drawnow; pause(0.01);
end
end
function F = myfun2(x,xdata, times, plt)
F = x(1)*exp(x(2)*xdata);
if(nargin >2)
plt.YData = x(1)*exp(x(2)*times);
drawnow; pause(0.01);
end
end
function F = myfun3(x,xdata, plt)
a = x(1); b = x(2); t0 = x(3); c = x(4);
F = a + b*atan(xdata - t0) + c*xdata;
if(nargin>2)
plt.YData = F;
drawnow; pause(0.01);
end
end

Cita come

Lateef Adewale Kareem (2024). lmcurvefit (https://www.mathworks.com/matlabcentral/fileexchange/172344-lmcurvefit), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2024a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
2.0.0

Algorithm is improved with back tracking. function handle for the updating the figure has been removed. But the example still shows how to achieve that by updating the plot inside the objective function.

1.0.25

corrected second example

1.0.2

Added functionality for bound and constraints. added jacobian file too.

1.0.1

improved stopping criteria

1.0.0