Adaptive Memetic Binary Optimization (AMBO) Algorithm

A novel adaptive memetic binary optimization algorithm for feature selection
26 download
Aggiornato 25 lug 2025
AMBO: Adaptive Memetic Binary Optimization Algorithm for Feature Selection
This repository contains the official MATLAB implementation of the AMBO (Adaptive Memetic Binary Optimization) algorithm proposed in the paper:
A. C. Çınar, A novel adaptive memetic binary optimization algorithm for feature selection, Artificial Intelligence Review, 2023. DOI: 10.1007/s10462-023-10482-8
📌 About the Project
AMBO is a pure binary metaheuristic algorithm specifically designed for feature selection tasks. It uses:
  • Adaptive crossover mechanisms (single-point, double-point, uniform)
  • Canonical mutation
  • Logic gate-based local search using AND, OR, and XOR for balancing exploration and exploitation.
It has been tested on 21 benchmark datasets and outperformed several state-of-the-art algorithms including BPSO, GA variants, BDA, BSSA, and BGWO.
📂 Files
  • Main.m: Main script to run the algorithm.
  • datasets/: Sample datasets used in the paper.
  • results/: Contains output logs and performance results.
🧪 Requirements
  • MATLAB R2021a or later
  • Statistics and Machine Learning Toolbox (for KNN)
📈 Citation
If you use this code or data in your research, please cite the paper as:
@article{cinar2023ambo,
title={A novel adaptive memetic binary optimization algorithm for feature selection},
author={Cinar, Ahmet Cevahir},
journal={Artificial Intelligence Review},
year={2023},
doi={10.1007/s10462-023-10482-8}
}
🤝 Collaboration
Contributions, ideas, and collaborations are welcome!
Feel free to contact me for research partnerships, extensions, or comparative benchmarking:
🔗 LinkedIn: Ahmet Cevahir Çınar

Cita come

@article{cinar2023ambo, title={A novel adaptive memetic binary optimization algorithm for feature selection}, author={Cinar, Ahmet Cevahir}, journal={Artificial Intelligence Review}, year={2023}, doi={10.1007/s10462-023-10482-8} }

Compatibilità della release di MATLAB
Creato con R2025a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.