Detection and Classification of Colorectal Cancer Types

Using Deep Residual Learning based on ResNet-50 with Adam Optimization Method
1 download
Aggiornato 30 ott 2025

Visualizza la licenza

This research explores deep learning methods using ResNet architectures and optimization methods for colorectal cancer classification. The ResNet-50 model with Adam optimization achieved 99.86% accuracy, outperforming other methods and proving effective in colon tumor segmentation.

Cita come

Herman Khalid (2025). Detection and Classification of Colorectal Cancer Types (https://it.mathworks.com/matlabcentral/fileexchange/182433-detection-and-classification-of-colorectal-cancer-types), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2025b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Tag Aggiungi tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0