Detection and Classification of Colorectal Cancer Types
Versione 1.0.0 (2,58 KB) da
Herman Khalid
Using Deep Residual Learning based on ResNet-50 with Adam Optimization Method
This research explores deep learning methods using ResNet architectures and optimization methods for colorectal cancer classification. The ResNet-50 model with Adam optimization achieved 99.86% accuracy, outperforming other methods and proving effective in colon tumor segmentation.
Cita come
Herman Khalid (2025). Detection and Classification of Colorectal Cancer Types (https://it.mathworks.com/matlabcentral/fileexchange/182433-detection-and-classification-of-colorectal-cancer-types), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2025b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxTag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0 |
