N-Similarity Binary Classifier (n-SBC)
Versione 1.0.2 (6,51 KB) da
Osvaldo Velázquez-González
A novel minimalist machine learning classifier based on Gray-coded binary patterns and Hamming similarity distance.
n-SBC (Similarity Binary Classifier)
A novel lazy/minimalist machine learning classifier based on Hamming binary similarity and Gray code (RBC).
How to Use it:
model = nsbc_train(X_train, y_train, num_decimals, u);
predictions = nsbc_predict(model, X_test);
Parameters:
- num_decimals: decimal places for normalization (e.g., 2)
- u: number of top neighbors to sum per class (e.g., 5)
Examples:
See examples:
- example_single_prediction.m: Example of train and predict only one sample using n-SBC model.
- example_loocv.m: Leave-One-Out Cross-Validation. For each sample, trains on all remaining samples and predicts the held-out one. Computes confusion matrix and balanced accuracy over the entire dataset.
New Python Package:
References and based on the paper:
Authors:
Osvaldo Velazquez-Gonzalez, Antonio Alarcón-Paredes and Cornelio Yañez-Marquez
Cita come
Velazquez-Gonzalez, Osvaldo, et al. “Medical Pattern Classification Using a Novel Binary Similarity Approach Based on an Associative Classifier.” Frontiers in Artificial Intelligence, vol. 8, Jan. 2026, https://doi.org/10.3389/frai.2025.1610856.
Compatibilità della release di MATLAB
Creato con
R2021b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxTag
Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
