Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter

Versione 1.0.0.0 (2,37 KB) da Yi Cao
A function using the unscented Kalman filter to perform nonlinear least square nonlinear optimizatio
10,4K download
Aggiornato 4 feb 2008

Visualizza la licenza

The Kalman filter can be interpreted as a feedback approach to minimize the least equare error. It can be applied to solve a nonlinear least square optimization problem. This function provides a way using the unscented Kalman filter to solve nonlinear least square optimization problems. Three examples are included: a general optimization problem, a problem to solve a set of nonlinear equations represented by a neural network model and a neural network training problem.

This function needs the unscented Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18217&objectType=FILE

Cita come

Yi Cao (2026). Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter (https://it.mathworks.com/matlabcentral/fileexchange/18356-nonlinear-least-square-optimization-through-parameter-estimation-using-the-unscented-kalman-filter), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2007a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Versione Pubblicato Note della release
1.0.0.0

update description