Al momento, stai seguendo questa presentazione
- Vedrai gli aggiornamenti nel tuo feed del contenuto seguito
- Potresti ricevere delle email a seconda delle tue preferenze per le comunicazioni
Numerical Analysis and Graphic Visualization with MATLAB
Condividi 'Numerical Analysis and Graphic Visualization with MATLAB'
Written for courses in numerical methods, this text introduces the use of MATLAB in numerical analysis.
Cita come
Shoichiro Nakamura (2025). Numerical Analysis and Graphic Visualization with MATLAB (https://it.mathworks.com/matlabcentral/fileexchange/2301-numerical-analysis-and-graphic-visualization-with-matlab), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
nakamura/v4/
- APE_rk(La, Lb, Ra, Rb ,C)
- Cheby_pw(n)
- F3m_(y,C,F)
- GC_inter(s_lev,i1,j1,i2,j2,x_grid, y_grid,fun)
- Lagran_(x, f, xi)
- Newt_gr(f_name, x0, xmin, xmax, n_points)
- Newt_itg(f_name, a, b, n)
- Newt_n(f_name, x0)
- Simps_n(f_name, a, b, n)
- Simps_v(f,h)
- aft_shk.m
- ape_circ.m
- arc_(x0,y0, r, deg1,deg2)
- arrow_(w, p1,p2)
- arrow_dot(w, p1,p2)
- b_design
- battery_(u,w,p0,p1)
- bisec_g(f_name, a,c, xmin, xmax, n_points)
- bisec_n(f_name, a,c)
- blasius_.m
- box_(hi, p1,p2)
- capacit_(u,w, p1,p2)
- cauchy_d(f_name, z0, k)
- cav_plot
- circle_(x0,y0,r)
- coil_a(n,u,w, p1,p2)
- coil_b(n,u,w, p1,p2)
- col_bar.m
- damper_.m
- dbl_itg(f_name,c_lo,c_hi,a,b,m,n)
- delta_(B)
- dem_bs(x)
- diff_fnd.m
- disk_edg.m
- disk_ptn.m
- edge_dif.m
- ellip_.m
- eqn_1(x)
- eqn_w3(x)
- f10_1.m
- f10_10.m
- f10_11.m
- f10_12.m
- f10_13.m
- f10_14.m
- f10_15.m
- f10_16.m
- f10_17.m
- f10_18.m
- f10_19.m
- f10_2.m
- f10_20.m
- f10_21.m
- f10_22.m
- f10_23.m
- f10_24.m
- f10_3.m
- f10_4.m
- f10_5.m
- f10_6.m
- f10_7.m
- f10_8.m
- f10_9.m
- f11_5.m
- f11_7.m
- f2_1.m
- f2_10.m
- f2_11.m
- f2_12.m
- f2_13.m
- f2_14.m
- f2_15.m
- f2_16.m
- f2_17.m
- f2_17a.m
- f2_17b.m
- f2_18.m
- f2_19.m
- f2_2.m
- f2_20.m
- f2_21.m
- f2_22.m
- f2_23.m
- f2_24.m
- f2_25.m
- f2_26.m
- f2_27.m
- f2_28.m
- f2_29.m
- f2_3.m
- f2_30.m
- f2_30a.m
- f2_31.m
- f2_32.m
- f2_33.m
- f2_34.m
- f2_35.m
- f2_36.m
- f2_4.m
- f2_5.m
- f2_6.m
- f2_7.m
- f2_8.m
- f2_9.m
- f3_1.m
- f3_2.m
- f3_3.m
- f3_4.m
- f3_5.m
- f4_1.m
- f4_10.m
- f4_11.m
- f4_12.m
- f4_13.m
- f4_14.m
- f4_15.m
- f4_16.m
- f4_17.m
- f4_2.m
- f4_3.m
- f4_4.m
- f4_5.m
- f4_6.m
- f4_7.m
- f4_8.m
- f4_9.m
- f4_9a.m
- f4_9b.m
- f5_1.m
- f5_10.m
- f5_11.m
- f5_12.m
- f5_13.m
- f5_14.m
- f5_2.m
- f5_3.m
- f5_4.m
- f5_5.m
- f5_6.m
- f5_7.m
- f5_8.m
- f5_9.m
- f6_1.m
- f6_2.m
- f6_3.m
- f7_1.m
- f7_10.m
- f7_11.m
- f7_2.m
- f7_3.m
- f7_4.m
- f7_5.m
- f7_6.m
- f7_7.m
- f7_8.m
- f7_9.m
- f8_1.m
- f8_2.m
- f8_3.m
- f8_4.m
- f8_5.m
- f9_1.m
- f9_10.m
- f9_11.m
- f9_12.m
- f9_13.m
- f9_14.m
- f9_15.m
- f9_2.m
- f9_3.m
- f9_4.m
- f9_5.m
- f9_6.m
- f9_7.m
- f9_8.m
- f9_9.m
- f_a2.m
- f_b1.m
- f_b2.m
- f_b3.m
- f_b4.m
- f_d1.m
- f_d2.m
- f_d3.m
- f_d4.m
- f_d5.m
- f_d6.m
- f_def(y, t)
- f_e1.m
- f_e2.m
- f_e3.m
- f_f1(x,y)
- f_f2(x,y)
- f_shoot(y,x,a,b)
- f_sm(y,t,a,b)
- f_x10_9(y, RL, EL)
- fan_rot.m
- fiff_fnd.m
- fract_c.m
- fractal_.m
- fun_dbl( x, y)
- fun_dbx(x)
- g_cont(x, y, f, s)
- gauss_q(f_name, a, b, n)
- guidm_1.m
- guidm_10.m
- guidm_11.m
- guidm_12.m
- guidm_13.m
- guidm_14.m
- guidm_15.m
- guidm_16.m
- guidm_17.m
- guidm_18.m
- guidm_2.m
- guidm_3.m
- guidm_4.m
- guidm_5.m
- guidm_6.m
- guidm_7.m
- guidm_8.m
- guidm_9.m
- h_captf(p1,p2, Body, Rarm1,Rarm2,Larm1,Larm2, Rleg1,Rleg2,Lleg1,Lleg2 )
- human_(p1,p2, Body, Rarm1,Rarm2,Larm1,Larm2, Rleg1,Rleg2,Lleg1,Lleg2 )
- human_c.m
- insect_(p1,p2)
- insect_t.m
- k_wheel.m
- kids1_.m
- kids2_.m
- l10_1.m
- l10_10.m
- l10_11.m
- l10_12.m
- l10_13.m
- l10_2.m
- l10_3.m
- l10_4.m
- l10_5.m
- l10_6.m
- l10_7.m
- l10_8.m
- l10_9.m
- l11_1.m
- l11_2.m
- l2_1.m
- l2_10.m
- l2_11.m
- l2_12.m
- l2_13.m
- l2_14.m
- l2_15.m
- l2_15a.m
- l2_15b.m
- l2_16.m
- l2_17.m
- l2_18.m
- l2_19.m
- l2_2.m
- l2_20.m
- l2_21.m
- l2_22.m
- l2_23.m
- l2_24.m
- l2_25.m
- l2_26.m
- l2_27.m
- l2_28.m
- l2_29.m
- l2_3.m
- l2_30.m
- l2_31.m
- l2_4.m
- l2_5.m
- l2_6.m
- l2_7.m
- l2_8.m
- l2_9.m
- l3_1.m
- l3_2.m
- l3_3.m
- l3_4.m
- l3_5.m
- l3_6.m
- l3_7.m
- l4_1.m
- l4_2.m
- l4_3.m
- l4_4.m
- l4_5.m
- l5_1.m
- l5_2.m
- l5_3.m
- l7_1.m
- l7_3.m
- l7_4.m
- l8_1.m
- l8_2.m
- l8_3.m
- l9_1.m
- l9_2.m
- l9_3.m
- l9_4.m
- l9_5.m
- l9_6.m
- l9_7.m
- l9_8.m
- l9_9.m
- l_a1.m
- l_b1.m
- l_b2.m
- l_b3.m
- l_b4.m
- l_b5.m
- l_c1.m
- l_d1.m
- l_d2.m
- l_d3.m
- l_d4.m
- l_d5.m
- legen_pw(n)
- line_(p1,p2)
- line_dot(p1,p2)
- lobe_.m
- low_lim( x)
- m_exit(ptp0)
- mach(ar,M)
- movie_1.m
- nozz_p2.m
- pipe_.m
- plane_.m
- poly_add(p1,p2)
- poly_drv(xd,yd,a)
- poly_itg(p)
- rand_im.m
- resist_(n,u,w, p1,p2)
- rotx_(x,y,z,th)
- roty_(x,y,z,th)
- rotz_(x,y,z,phi)
- shape_pw(x)
- spring_(n,u,w, p1,p2)
- stream_.m
- stret_(n,L,ds0,ds1)
- switch_(u, w, p1,p2)
- t_bladeb.m
- task_1(h,k)
- td_data
- trapez_g(f_name, a, b, n)
- trapez_n(f_name, a, b, n)
- trapez_v(f, h)
- tri_cont(tri_data,xy_data,f_data,ys)
- tri_diag(a,b,c,d,n)
- tri_grid(tri_d, xy_d, y_scale)
- two_eyes(phi,eyeangle, x0,y0,z0,width)
- upp_lim( x)
- vort_.m
- vxv_(a,b)
- wall_ht(T1)
- wall_ht(T1)
- wing_
- wing_2d.m
nakamura/v5/
- APE_rk(La, Lb, Ra, Rb ,C)
- Cheby_pw(n)
- F3m_(y,C,F)
- GC_inter(s_lev,i1,j1,i2,j2,x_grid, y_grid,fun)
- Lagran_(x, f, xi)
- Newt_gr(f_name, x0, xmin, xmax, n_points)
- Newt_itg(f_name, a, b, n)
- Newt_n(f_name, x0)
- Simps_n(f_name, a, b, n)
- Simps_v(f,h)
- aft_shk.m
- ape_circ.m
- arc_(x0,y0, r, deg1,deg2)
- arrow_(w, p1,p2)
- arrow_dot(w, p1,p2)
- b_design
- battery_(u,w,p0,p1)
- bisec_g(f_name, a,c, xmin, xmax, n_points)
- bisec_n(f_name, a,c)
- blasius_.m
- box_(hi, p1,p2)
- capacit_(u,w, p1,p2)
- cauchy_d(f_name, z0, k)
- cav_plot
- circle_(x0,y0,r)
- coil_a(n,u,w, p1,p2)
- coil_b(n,u,w, p1,p2)
- col_bar.m
- damper_.m
- dbl_exp(f_name,a,b,n)
- dbl_itg(f_name,c_lo,c_hi,a,b,m,n)
- delta_(B)
- dem_bs(x)
- diff_fnd.m
- disk_edg.m
- disk_ptn.m
- edge_dif.m
- ellip_.m
- eqn_1(x)
- eqn_w3(x)
- f10_1.m
- f10_10.m
- f10_11.m
- f10_12.m
- f10_13.m
- f10_14.m
- f10_15.m
- f10_16.m
- f10_17.m
- f10_18.m
- f10_19.m
- f10_2.m
- f10_20.m
- f10_21.m
- f10_22.m
- f10_23.m
- f10_24.m
- f10_3.m
- f10_4.m
- f10_5.m
- f10_6.m
- f10_7.m
- f10_8.m
- f10_9.m
- f11_5.m
- f11_7.m
- f2_1.m
- f2_10.m
- f2_11.m
- f2_12.m
- f2_13.m
- f2_14.m
- f2_15.m
- f2_16.m
- f2_17.m
- f2_17a.m
- f2_17b.m
- f2_18.m
- f2_19.m
- f2_2.m
- f2_20.m
- f2_21.m
- f2_22.m
- f2_23.m
- f2_24.m
- f2_25.m
- f2_26.m
- f2_27.m
- f2_28.m
- f2_29.m
- f2_3.m
- f2_30.m
- f2_30a.m
- f2_31.m
- f2_32.m
- f2_33.m
- f2_34.m
- f2_35.m
- f2_36.m
- f2_4.m
- f2_5.m
- f2_6.m
- f2_7.m
- f2_8.m
- f2_9.m
- f3_1.m
- f3_2.m
- f3_3.m
- f3_4.m
- f3_5.m
- f4_1.m
- f4_10.m
- f4_11.m
- f4_12.m
- f4_13.m
- f4_14.m
- f4_15.m
- f4_16.m
- f4_17.m
- f4_2.m
- f4_3.m
- f4_4.m
- f4_5.m
- f4_6.m
- f4_7.m
- f4_8.m
- f4_9.m
- f4_9a.m
- f4_9b.m
- f5_1.m
- f5_10.m
- f5_11.m
- f5_12.m
- f5_13.m
- f5_14.m
- f5_2.m
- f5_3.m
- f5_4.m
- f5_5.m
- f5_6.m
- f5_7.m
- f5_8.m
- f5_9.m
- f6_1.m
- f6_2.m
- f6_3.m
- f7_1.m
- f7_10.m
- f7_11.m
- f7_2.m
- f7_3.m
- f7_4.m
- f7_5.m
- f7_6.m
- f7_7.m
- f7_8.m
- f7_9.m
- f8_1.m
- f8_2.m
- f8_3.m
- f8_4.m
- f8_5.m
- f9_1.m
- f9_10.m
- f9_11.m
- f9_12.m
- f9_13.m
- f9_14.m
- f9_15.m
- f9_2.m
- f9_3.m
- f9_4.m
- f9_5.m
- f9_6.m
- f9_7.m
- f9_8.m
- f9_9.m
- f_a2.m
- f_b1.m
- f_b2.m
- f_b3.m
- f_b4.m
- f_d1.m
- f_d2.m
- f_d3.m
- f_d4.m
- f_d5.m
- f_d6.m
- f_def(y, t)
- f_e1.m
- f_e2.m
- f_e3.m
- f_f1(x,y)
- f_f2(x,y)
- f_shoot(y,x,a,b)
- f_sm(y,t,a,b)
- f_x10_9(y, RL, EL)
- fan_rot.m
- fiff_fnd.m
- fract_cp.m
- fract_cv.m
- fractal_.m
- fun_dbl( x, y)
- fun_dbx(x)
- g_cont(x, y, f, s)
- gauss_q(f_name, a, b, n)
- guidm_1.m
- guidm_10.m
- guidm_11.m
- guidm_12.m
- guidm_13.m
- guidm_14.m
- guidm_15.m
- guidm_16.m
- guidm_17.m
- guidm_18.m
- guidm_2.m
- guidm_3.m
- guidm_4.m
- guidm_5.m
- guidm_6.m
- guidm_7.m
- guidm_8.m
- guidm_9.m
- h_captf(p1,p2, Body, Rarm1,Rarm2,Larm1,Larm2, Rleg1,Rleg2,Lleg1,Lleg2 )
- h_faces.m
- happy_f1
- happy_f2
- happy_f3
- happy_f6
- happy_f7
- happy_f9
- human_(p1,p2, Body, Rarm1,Rarm2,Larm1,Larm2, Rleg1,Rleg2,Lleg1,Lleg2 )
- human_c.m
- insect_(p1,p2)
- insect_t.m
- k_wheel.m
- kids1_.m
- kids2_.m
- l10_1.m
- l10_10.m
- l10_11.m
- l10_12.m
- l10_13.m
- l10_2.m
- l10_3.m
- l10_4.m
- l10_5.m
- l10_6.m
- l10_7.m
- l10_8.m
- l10_9.m
- l11_1.m
- l11_2.m
- l2_1.m
- l2_10.m
- l2_11.m
- l2_12.m
- l2_13.m
- l2_14.m
- l2_15.m
- l2_15a.m
- l2_15b.m
- l2_16.m
- l2_17.m
- l2_18.m
- l2_19.m
- l2_2.m
- l2_20.m
- l2_21.m
- l2_22.m
- l2_23.m
- l2_24.m
- l2_25.m
- l2_26.m
- l2_27.m
- l2_28.m
- l2_29.m
- l2_3.m
- l2_30.m
- l2_31.m
- l2_4.m
- l2_5.m
- l2_6.m
- l2_7.m
- l2_8.m
- l2_9.m
- l3_1.m
- l3_2.m
- l3_3.m
- l3_4.m
- l3_5.m
- l3_6.m
- l3_7.m
- l4_1.m
- l4_2.m
- l4_3.m
- l4_4.m
- l4_5.m
- l5_1.m
- l5_2.m
- l5_3.m
- l7_1.m
- l7_3.m
- l7_4.m
- l8_1.m
- l8_2.m
- l8_3.m
- l9_1.m
- l9_2.m
- l9_3.m
- l9_4.m
- l9_5.m
- l9_6.m
- l9_7.m
- l9_8.m
- l9_9.m
- l_a1.m
- l_b1.m
- l_b2.m
- l_b3.m
- l_b4.m
- l_b5.m
- l_c1.m
- l_d1.m
- l_d2.m
- l_d3.m
- l_d4.m
- l_d5.m
- legen_pw(n)
- line_(p1,p2)
- line_dot(p1,p2)
- lobe_.m
- low_lim( x)
- m
- m
- m
- m_exit(ptp0)
- mach(ar,M)
- movie_1.m
- nozz_p2.m
- pipe_.m
- plane_.m
- poly_add(p1,p2)
- poly_drv(xd,yd,a)
- poly_itg(p)
- rand_im.m
- resist_(n,u,w, p1,p2)
- rotx_(x,y,z,th)
- roty_(x,y,z,th)
- rotz_(x,y,z,phi)
- shape_pw(x)
- spring_(n,u,w, p1,p2)
- stream_.m
- stret_(n,L,ds0,ds1)
- switch_(u, w, p1,p2)
- t_bladeb.m
- task_1(h,k)
- td_data
- trapez_g(f_name, a, b, n)
- trapez_n(f_name, a, b, n)
- trapez_v(f, h)
- tri_cont(tri_data,xy_data,f_data,ys)
- tri_diag(a,b,c,d,n)
- tri_grid(tri_d, xy_d, y_scale)
- two_eyes(phi,eyeangle, x0,y0,z0,width)
- upp_lim( x)
- vort_.m
- vxv_(a,b)
- wall_ht(T1)
- wall_ht(T1)
- wing_
- wing_2d.m
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia-Pacifico
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
