Principal Component Analysis (PCA) in MATLAB

This is a demonstration of how one can use PCA to classify a 2D data set.
22,6K download
Aggiornato 1 giu 2009

Visualizza la licenza

This is a demonstration of how one can use PCA to classify a 2D data set. This is the simplest form of PCA but you can easily extend it to higher dimensions and you can do image classification with PCA

PCA consists of a number of steps:
- Loading the data
- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)

Note: MATLAB has a built-in PCA functions. This file shows how a PCA works

Cita come

Siamak Faridani (2025). Principal Component Analysis (PCA) in MATLAB (https://it.mathworks.com/matlabcentral/fileexchange/24322-principal-component-analysis-pca-in-matlab), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2007b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0