Principal Component Analysis (PCA) in MATLAB
This is a demonstration of how one can use PCA to classify a 2D data set. This is the simplest form of PCA but you can easily extend it to higher dimensions and you can do image classification with PCA
PCA consists of a number of steps:
- Loading the data
- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
Note: MATLAB has a built-in PCA functions. This file shows how a PCA works
Cita come
Siamak Faridani (2025). Principal Component Analysis (PCA) in MATLAB (https://it.mathworks.com/matlabcentral/fileexchange/24322-principal-component-analysis-pca-in-matlab), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
