Simpson's rule for numerical integration
Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.
Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.
Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM
SIMPS uses the same syntax as TRAPZ.
Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071
Cita come
Damien Garcia (2024). Simpson's rule for numerical integration (https://www.mathworks.com/matlabcentral/fileexchange/25754-simpson-s-rule-for-numerical-integration), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Riconoscimenti
Ispirato: simpsonQuadrature, VGRID: utility to help vectorize code, Generation of Random Variates
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.