PCA (Principial Component Analysis)

Versione 1.2.0.0 (1,48 KB) da Andreas
Principal Component Analysis Implementation of LindsaySmithPCA.pdf
2,5K download
Aggiornato 18 mar 2010

Visualizza la licenza

- Subtracting the mean of the data from the original dataset
- Finding the covariance matrix of the dataset
- Finding the eigenvector(s) associated with the greatest eigenvalue(s)
- Projecting the original dataset on the eigenvector(s)
- Use only a certain number of the eigenvector(s)
- Do back-project to the original basis vectors

Implementation of
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

"A tutorial on Principial Component Analysis"

Cita come

Andreas (2024). PCA (Principial Component Analysis) (https://www.mathworks.com/matlabcentral/fileexchange/26793-pca-principial-component-analysis), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2007b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers
Riconoscimenti

Ispirato: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.2.0.0

Update Link

1.1.0.0

description update

1.0.0.0