FresnelS and FresnelC

Efficient and accurate computation of the Fresnel sine and cosine integrals
2,5K download
Aggiornato 3 mag 2012

Visualizza la licenza

I noticed the many codes on the FEX to compute the Fresnel integrals for real arguments, and it left me wondering how I might try solving this problem in MATLAB for both high accuracy and high efficiency.

The approach I took yields a maximum error of roughly 1e-14 as far as I could get reasonable values to compare it to. (The screenshot shows the predicted error for a sampling of points.)

I've supplied functions for both the Fresnel sine and cosine integrals, as well as a .pdf file that explains the approach I took.

Evaluate the Fresnel cosine integral C(x) at x = 1.38

>> fresnelC(1.38,0)
ans =
0.562975925772444

Verify the correctness of this value using quadgk.

>> FresnelCObj = @(t) cos(pi*t.^2/2);
>> quadgk(FresnelCObj,0,1.38,'abstol',1e-15')
ans =
0.562975925772444

Now, how fast is fresnelC? Using Steve Eddins timeit code to yield an accurate estimate of the time required, we see that it is reasonably fast for scalar input.

>> timeit(@() fresnelC(1.38))
ans =
0.000193604455833333

More importantly, these functions are properly vectorized. So 1 million evaluations are easy to do, and are much faster than 1 million times the time taken for one evaluation.

>> T = rand(1000000,1);
>> tic
>> FCpred = fresnelC(T);
>> toc
Elapsed time is 0.226884 seconds.

Cita come

John D'Errico (2024). FresnelS and FresnelC (https://www.mathworks.com/matlabcentral/fileexchange/28765-fresnels-and-fresnelc), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2010a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.1.0.0

Acknowledge two other files

1.0.0.0