Chi-square tests
Chi-square tests of homogeneity and independence.
Computes the P-value for I x J - table row/col independence.
Ref.: DeltaProt toolbox at http://services.cbu.uib.no/software/deltaprot/
Input:
X: data matrix (I x J -table) of the observed frequency cells.
method: 'RC': Read-Cressie power divergence statistics (default), lambda= 2/3
'Pe': Standard Pearson chi2-distance, lambda= 1
'LL': Log Likelihood ratio distance, lambda= 0
Output:
P-value
Use: P = chi2Tests(Observed,'RC')
The P-value is computed through approximation with chi-2 distribution
under the null hypothesis for all methods.
The 'RC'-method is sligtly better than the 'Pe'-method in small tables with unbalanced column margins
Please, use the following reference:
Thorvaldsen, S. , Flå, T. and Willassen, N.P. (2010) DeltaProt: a software toolbox for comparative genomics. BMC Bioinformatics 2010, Vol 11:573.
See http://www.biomedcentral.com/1471-2105/11/573
Other reference:
Rudas, T. (1986): A Monte Carlo Comparision of Small Sample Behaviour
of The Pearson, the Likelihood Ratio and the Cressie-Read Statistics. J.Statist. Comput. Simul, vol 24, pp 107-120.
Read, TRC and Cressie, NAC (1988): Goodness of Fit Statistics for Discrete Multivariate Data. Springer Verlag.
Ewens, WJ and Grant, GR (2001): Statistical Methods in Bioinformatics. Springer Verlag.
Cita come
Steinar Thorvaldsen (2025). Chi-square tests (https://it.mathworks.com/matlabcentral/fileexchange/29817-chi-square-tests), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Probability Distributions and Hypothesis Tests > Hypothesis Tests >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
