2D polynomial fitting with SVD

Fits a polynomial f(x,y) to best fit the data points z using SVD.
1,6K download
Aggiornato 14 lug 2011

Visualizza la licenza

Use coeffs = fit2dPolySVD(x, y, z, order) to fit a polynomial of x and y so that it provides a best fit to the data z.
Uses SVD which is robust even if the data is degenerate. Will always produce a least-squares best fit to the data even if the data is overspecified or underspecified.
x, y, z are column vectors specifying the points to be fitted.
The three vectors must be the same length.
Order is the order of the polynomial to fit.
Coeffs returns the coefficients of the polynomial. These are in increasing power of y for each increasing power of x, e.g. for order 2:
zbar = coeffs(1) + coeffs(2).*y + coeffs(3).*y^2 + coeffs(4).*x + coeffs(5).*x.*y + coeffs(6).*x^2

Use eval2dPoly(x,y,coeffs) to evaluate the polynomial at any (x,y) points.

If the data is underspecified then the LOWER order coefficients will come out as zero, the solution being a fit using higher orders; use a lower order fit for a more obvious solution in this case.

Cita come

Richard Whitehead (2026). 2D polynomial fitting with SVD (https://it.mathworks.com/matlabcentral/fileexchange/31636-2d-polynomial-fitting-with-svd), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2011a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Eigenvalues in Help Center e MATLAB Answers
Riconoscimenti

Ispirato da: 2D Weighted Polynomial Fitting and Evaluation

Versione Pubblicato Note della release
1.4.0.0

Minor change to description

1.3.0.0

Fixed typo in error reporting lines

1.2.0.0

Scaling ignored negative values

1.1.0.0

Corrected typos in description

1.0.0.0