Space vector representation of three phase signals in stationary and rotating frames

Space Vector Representation of Three Phase Signals in Stationary and Rotating Frames
1,8K download
Aggiornato 28 lug 2011

Visualizza la licenza

This demonstration illustrates the use of a complex space vector to represent a three-phase signal . It also shows the transformation of the 3-phase signal 'ABC' into an equivalent 2-phase system 'alpha_beta'. The only restriction to the 3-phase signal is that the zero-sequence component is zero i.e. fA+fB+fC=0.
The complex space vector in the stationary frame is defined as
Fs = 2/3 (fA + fB*exp(j2*pi/3) + fC*exp(-2j*pi/3)
whose cartesian components are
fa = Re (Fs)
fb = Im (Fs)
When expressed in a rotating frame at frequency wk, the space vector becomes
Fk = Fs*exp(-jwk*t)
whose cartesian components are
fd = Re(Fk)
fq = Im(Fk)
The inverse transformation from complex space vector back to the 3-phase signal is also demonstrated.
Finally, the real transformations of the ABC components to the components ab (in the stationary frame) and then dq (in the rotating frame) are shown.

Cita come

Syed Abdul Rahman Kashif (2024). Space vector representation of three phase signals in stationary and rotating frames (https://www.mathworks.com/matlabcentral/fileexchange/32368-space-vector-representation-of-three-phase-signals-in-stationary-and-rotating-frames), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2008b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0