Space vector representation of three phase signals in stationary and rotating frames
This demonstration illustrates the use of a complex space vector to represent a three-phase signal . It also shows the transformation of the 3-phase signal 'ABC' into an equivalent 2-phase system 'alpha_beta'. The only restriction to the 3-phase signal is that the zero-sequence component is zero i.e. fA+fB+fC=0.
The complex space vector in the stationary frame is defined as
Fs = 2/3 (fA + fB*exp(j2*pi/3) + fC*exp(-2j*pi/3)
whose cartesian components are
fa = Re (Fs)
fb = Im (Fs)
When expressed in a rotating frame at frequency wk, the space vector becomes
Fk = Fs*exp(-jwk*t)
whose cartesian components are
fd = Re(Fk)
fq = Im(Fk)
The inverse transformation from complex space vector back to the 3-phase signal is also demonstrated.
Finally, the real transformations of the ABC components to the components ab (in the stationary frame) and then dq (in the rotating frame) are shown.
Cita come
Syed Abdul Rahman Kashif (2024). Space vector representation of three phase signals in stationary and rotating frames (https://www.mathworks.com/matlabcentral/fileexchange/32368-space-vector-representation-of-three-phase-signals-in-stationary-and-rotating-frames), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Analysis >
Tag
Riconoscimenti
Ispirato: Toolbox for Modeling and Analysis of Power Networks in the DQ0 Reference Frame
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 |