Kernel smoothing density estimate for circular data
This is a companion to Matlab's Statistics toolbox ksdensity function and Philipp Berens' CircStat toolbox.
The difference with Matlab's ksdensity function is that this function is adaped to circular data, such as wind orientation. Using Matlab's function will give biased values at the extremities of the pdf for circular data.
The kernel used in this function is a normal distribution with an automatically computed optimal standard deviation as presented in:
- Silverman B. W. (1998), Density Estimation for Statistics and Data Analysis, Chapman & Hall / CRC, Boca Raton (FL), 47-8.
- Bowman Adrian W. & Adelchi Azzalini (1997) - Applied Smoothing Techniques for Data Analysis, Oxford University Press, 31.
- Wand M. P. & M. C. Jones (1995) - Kernel Smoothing, Chapman & Hall, London, 60-3.
Cita come
Vlad Atanasiu (2024). Kernel smoothing density estimate for circular data (https://www.mathworks.com/matlabcentral/fileexchange/32614-kernel-smoothing-density-estimate-for-circular-data), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Descriptive Statistics and Visualization >
Tag
Riconoscimenti
Ispirato da: Circular Statistics Toolbox (Directional Statistics)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.