Kohonen Self Organizing Feature Maps (SOFM) for Simulink.
This model contains a implementation of the SOFM algorithm using Simulink's basic blocks. The SOFM algorithm is associated with a single block with various configuration parameters:
Number of the neuron inputs
Grid size (rows and columns)
Initial value of standard deviation (sigma0) - Topological neighborhood function
Time constant (t1) - Topological neighborhood function decrease
Initial value of the learning-rate parameter (mu0)
Time constant (t2) - Learning-rate parameter decrease
The attached file contains an example of a network with two dimensional lattice driven by a two dimensional distribution with 100 neurons arranged in a 2D lattice of 10 x 10 nodes.
Marcelo Augusto Costa Fernandes
DCA - CT - UFRN
mfernandes@dca.ufrn.br
Cita come
Marcelo Fernandes (2025). Kohonen Self Organizing Feature Maps (SOFM) for Simulink. (https://it.mathworks.com/matlabcentral/fileexchange/36369-kohonen-self-organizing-feature-maps-sofm-for-simulink), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Deep Learning Toolbox > Train Deep Neural Networks > Function Approximation, Clustering, and Control >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
