Kohonen Self Organizing Feature Maps (SOFM) for Simulink.

A implementation of the Kohonen Self Organizing Feature Maps (SOFM) algorithm for Simulink.
1,2K download
Aggiornato 22 mag 2012

Visualizza la licenza

This model contains a implementation of the SOFM algorithm using Simulink's basic blocks. The SOFM algorithm is associated with a single block with various configuration parameters:

Number of the neuron inputs
Grid size (rows and columns)
Initial value of standard deviation (sigma0) - Topological neighborhood function
Time constant (t1) - Topological neighborhood function decrease
Initial value of the learning-rate parameter (mu0)
Time constant (t2) - Learning-rate parameter decrease

The attached file contains an example of a network with two dimensional lattice driven by a two dimensional distribution with 100 neurons arranged in a 2D lattice of 10 x 10 nodes.

Marcelo Augusto Costa Fernandes
DCA - CT - UFRN
mfernandes@dca.ufrn.br

Cita come

Marcelo Fernandes (2025). Kohonen Self Organizing Feature Maps (SOFM) for Simulink. (https://it.mathworks.com/matlabcentral/fileexchange/36369-kohonen-self-organizing-feature-maps-sofm-for-simulink), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R14
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Function Approximation, Clustering, and Control in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.2.0.0

weights2DView.m (s-function) file was inserted.

1.1.0.0

Insert more information of the model in description field.

1.0.0.0