Symmetric eigenvalue decomposition and the SVD
This submission contains functions for computing the eigenvalue decomposition of a symmetric matrix (QDWHEIG.M) and the singular value decomposition (QDWHSVD.M) by efficient and stable algorithms based on spectral divide-and-conquer. The computed results tend to be more accurate than those given by MATLAB's built-in functions EIG.M and SVD.M.
Function TEST.M runs a simple test of the codes.
Details on the underlying algorithms can be found in
Y. Nakatsukasa and N. J. Higham. Stable and Efficient Spectral Divide and Conquer Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. MIMS EPrint 2012.52, The University of Manchester, May 2012.
http://eprints.ma.man.ac.uk/1824
Cita come
Yuji Nakatsukasa (2025). Symmetric eigenvalue decomposition and the SVD (https://it.mathworks.com/matlabcentral/fileexchange/36830-symmetric-eigenvalue-decomposition-and-the-svd), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
