Performance Measures for Classification
Classification models in machine learning are evaluated for their performance by common performance measures. This function calculates the following performance measures: Accuracy, Sensitivity, Specificity, Precision, Recall, F-Measure and G-mean. The signature of the function and description of the arguments are given below:
EVAL = Evaluate(ACTUAL,PREDICTED)
Input:
ACTUAL = Column matrix with actual class labels of the training examples
PREDICTED = Column matrix with predicted class labels by the classification model
Output:
EVAL = Row matrix with all the performance measures
Cita come
Barnan Das (2025). Performance Measures for Classification (https://it.mathworks.com/matlabcentral/fileexchange/37758-performance-measures-for-classification), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
