Newton Raphson Solver with adaptive Step Size
%   NewtonRaphson solves equations of the form:
%             
%   F(X) = 0    where F and X may be scalars or vectors
%
%  NewtonRaphson implements the damped newton method with adaptive step
%  size. Theory and discussion can be found here:
%  http://forum.vis.ethz.ch/showthread.php?13434-Damped-Newton-method-Schrittweitensteuerung
%
%  The Jacobian is calculated numerically by a simple forward differential 
%  method. Find more here:
%  http://en.wikipedia.org/wiki/Numerical_differentiation
%
%  The error estimation ist made by root-mean-square
%  http://en.wikipedia.org/wiki/Root_mean_square
%
%
%   x = NewtonRaphson(FUN,X0) starts at the initial guess X0 and tries to 
%    solve the equations in FUN. FUN is a function handle and has to accept
%    input x and return a vector of equation values F evaluated at x.
%    Default values for solver and display setting.
%    
%   x = NewtonRaphson(FUN,X0,lambda) starts at the initial guess X0 and tries to 
%    solve the equations in FUN with user supplied initial relaxation factor. Might
%    be useful to increase solution speed.
%   default value: lambda = 0.1
%
%   x = NewtonRaphson(FUN,X0,lambda,maxIter) ...
%    User supplied maximum number of iterations
%    default value: maxIter = 100
%
%   x = NewtonRaphson(FUN,X0,lambda,maxIter,Display) ...
%    Display options: 
%         'on' - full output during solution process
%         'off' - hide output
%    default value: maxIter = 'off'
%
%  OUTPUT Arguments:
%   x - Solution
%   F - Value at x
%   Jac - Jacobian at x
%   Exitflat: exit conditions of damped newton
%     1: all ok. Solution found
%     -1: no solution found
%     -2: FUN is not a function handle 
%
%   To enter Demo Mode start without any arguments
%     NewtonRaphson();
%  
%   Examples:
%
%  Find zero of function atan(x)
%
%   create function handle (here as an anonymous function)
%  F = @(x)atan(x);
%  x0 = 5; % start value /initial guess
%
%  x = NewtonRaphson(F,x0,1); 
%  
%  Find solution of following system of equations (same as in fsolve help)
%  F = @(x)[2*x(1) - x(2) - exp(-x(1));
%      -x(1) + 2*x(2) - exp(-x(2))];
%  x0 = [1;2];
%
%  x = NewtonRaphson(F,x0,0.1,100,'on');
Cita come
Andreas (2025). Newton Raphson Solver with adaptive Step Size (https://it.mathworks.com/matlabcentral/fileexchange/40038-newton-raphson-solver-with-adaptive-step-size), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 | 
