Galerkins method over "ne" elements for solving 2nd-order homogeneous, c.c BVP
The purpose of this program is to implement Galerkin method over "ne" individual elements for solving the following general 2nd order,
homogeneous, Boundary Value problem (BVP) with constant coefficients, and then comparing the answer with the exact solution.
ax"(t)+bx'(t)+cx(t)=0 for t1<=t<=t2
BC: x(t1)=x1 and x(t2)=x2
>> BVP_Galerkin(a,b,c,t1,t2,x1,x2,ne)
where "ne" is the number of elements
The output of this program is
1- The approximated x(t) vs. exact x(t)
2- The approximated x'(t) vs. exact x'(t)
3- The approximated x"(t) vs. exact x"(t)
Example:
x"(t)+ 0.5x'(t)+ 10x(t)=0
BC: x(1)=2, x(10)=0;
Solution: We have: a=1;b=2;c=3;
t1=1;t2=10;
x1=2;x2=0;
Using ne=128 elements,
>>BVP_Galerkin2(1,2,3,1,10,2,0,128)
Cita come
Dr. Redmond Ramin Shamshiri (2025). Galerkins method over "ne" elements for solving 2nd-order homogeneous, c.c BVP (https://it.mathworks.com/matlabcentral/fileexchange/40153-galerkins-method-over-ne-elements-for-solving-2nd-order-homogeneous-c-c-bvp), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
BVP_Galerkin2/
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0.0 |
