Principal Component Analysis for large feature and small observation
Versione 1.1.0.0 (379 Byte) da
Kim Xu
This file is PCA for large feature.
Small size of observation and huge features happens a lot in shape/image and bioinformatics analysis. This file provides an alternative way of perform PCA analysis.
More detail about PCA please check: http://www.math.fsu.edu/~qxu/TCI.html
Cita come
Kim Xu (2024). Principal Component Analysis for large feature and small observation (https://www.mathworks.com/matlabcentral/fileexchange/45967-principal-component-analysis-for-large-feature-and-small-observation), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2009b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e MATLAB Answers
Tag
Riconoscimenti
Ispirato: EOF
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.